Bidirectional LSTM for Named Entity Recognition in Twitter Messages

NUT@COLING Pub Date : 2016-12-11 DOI:10.17863/CAM.7201
Nut Limsopatham, Nigel Collier
{"title":"Bidirectional LSTM for Named Entity Recognition in Twitter Messages","authors":"Nut Limsopatham, Nigel Collier","doi":"10.17863/CAM.7201","DOIUrl":null,"url":null,"abstract":"In this paper, we present our approach for named entity recognition in Twitter messages that we used in our participation in the Named Entity Recognition in Twitter shared task at the COLING 2016 Workshop on Noisy User-generated text (WNUT). The main challenge that we aim to tackle in our participation is the short, noisy and colloquial nature of tweets, which makes named entity recognition in Twitter message a challenging task. In particular, we investigate an approach for dealing with this problem by enabling bidirectional long short-term memory (LSTM) to automatically learn orthographic features without requiring feature engineering. In comparison with other systems participating in the shared task, our system achieved the most effective performance on both the ‘segmentation and categorisation’ and the ‘segmentation only’ sub-tasks.","PeriodicalId":431057,"journal":{"name":"NUT@COLING","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@COLING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17863/CAM.7201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

Abstract

In this paper, we present our approach for named entity recognition in Twitter messages that we used in our participation in the Named Entity Recognition in Twitter shared task at the COLING 2016 Workshop on Noisy User-generated text (WNUT). The main challenge that we aim to tackle in our participation is the short, noisy and colloquial nature of tweets, which makes named entity recognition in Twitter message a challenging task. In particular, we investigate an approach for dealing with this problem by enabling bidirectional long short-term memory (LSTM) to automatically learn orthographic features without requiring feature engineering. In comparison with other systems participating in the shared task, our system achieved the most effective performance on both the ‘segmentation and categorisation’ and the ‘segmentation only’ sub-tasks.
推特消息中命名实体识别的双向LSTM
在本文中,我们介绍了Twitter消息中命名实体识别的方法,我们在COLING 2016年噪声用户生成文本(WNUT)研讨会上参与Twitter共享任务中的命名实体识别时使用了该方法。在我们的参与中,我们要解决的主要挑战是tweet的简短、嘈杂和口语化,这使得Twitter消息中的命名实体识别成为一项具有挑战性的任务。特别是,我们研究了一种方法,通过使双向长短期记忆(LSTM)在不需要特征工程的情况下自动学习正字法特征来处理这个问题。与参与共享任务的其他系统相比,我们的系统在“分割和分类”和“仅分割”子任务上都取得了最有效的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信