Jingyu He, Ziyang Shen, Fengshi Tian, Jinbo Chen, Jie Yang, M. Sawan, Hsiang-Ting Chen, P. Bogdan, C. Tsui
{"title":"SNNOpt: An Application-Specific Design Framework for Spiking Neural Networks","authors":"Jingyu He, Ziyang Shen, Fengshi Tian, Jinbo Chen, Jie Yang, M. Sawan, Hsiang-Ting Chen, P. Bogdan, C. Tsui","doi":"10.1109/AICAS57966.2023.10168605","DOIUrl":null,"url":null,"abstract":"We propose a systematic application-specific hardware design methodology for designing Spiking Neural Network (SNN), SNNOpt, which consists of three novel phases: 1) an Olliver-Ricci-Curvature (ORC)-based architecture-aware network partitioning, 2) a reinforcement learning mapping strategy, and 3) a Bayesian optimization algorithm for NoC design space exploration. Experimental results show that SNNOpt achieves a 47.45% less runtime and 58.64% energy savings over state-of-the-art approaches.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a systematic application-specific hardware design methodology for designing Spiking Neural Network (SNN), SNNOpt, which consists of three novel phases: 1) an Olliver-Ricci-Curvature (ORC)-based architecture-aware network partitioning, 2) a reinforcement learning mapping strategy, and 3) a Bayesian optimization algorithm for NoC design space exploration. Experimental results show that SNNOpt achieves a 47.45% less runtime and 58.64% energy savings over state-of-the-art approaches.