Optimal feature subset selection for fuzzy extreme learning machine using genetic algorithm with multilevel parameter optimization

A. Kale, S. Sonavane
{"title":"Optimal feature subset selection for fuzzy extreme learning machine using genetic algorithm with multilevel parameter optimization","authors":"A. Kale, S. Sonavane","doi":"10.1109/ICSIPA.2017.8120652","DOIUrl":null,"url":null,"abstract":"The crucial objective of this paper is to design a hybrid model of the genetic algorithm for fuzzy extreme learning machine classifier (GA-FELM), which selects an optimal feature subset by using the multilevel parameter optimization technique. Feature subset selection is an important task in pattern classification and knowledge discovery problems. The generalization performance of the system is not only depending on optimal features but also dependent upon the classifier (learning algorithm). Therefore, it is an important task to select a fast and efficient classifier. Research efforts have affirmed that extreme learning machine (ELM) has superior and accurate classification ability. However, ELM is failed to handle the uncertain data. One of the alternative solutions is fuzzy-ELM, which combines the advantages of fuzzy logic and ELM. GA-FELM is able to handle curse of dimensionality problem, optimization problem and weighted classification problem with maximizing classification accuracy by minimizing the number of features. In order to validate the efficiency of GA-FELM, the comparative performance is evaluated by using three different approaches viz. 1. ELM and GA-ELM 2. GA-ELM and GA-FELM 3. GA-FELM and GA-existing classifier. The result analysis shows that classification accuracy is improved with 9% while reducing 62% features.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The crucial objective of this paper is to design a hybrid model of the genetic algorithm for fuzzy extreme learning machine classifier (GA-FELM), which selects an optimal feature subset by using the multilevel parameter optimization technique. Feature subset selection is an important task in pattern classification and knowledge discovery problems. The generalization performance of the system is not only depending on optimal features but also dependent upon the classifier (learning algorithm). Therefore, it is an important task to select a fast and efficient classifier. Research efforts have affirmed that extreme learning machine (ELM) has superior and accurate classification ability. However, ELM is failed to handle the uncertain data. One of the alternative solutions is fuzzy-ELM, which combines the advantages of fuzzy logic and ELM. GA-FELM is able to handle curse of dimensionality problem, optimization problem and weighted classification problem with maximizing classification accuracy by minimizing the number of features. In order to validate the efficiency of GA-FELM, the comparative performance is evaluated by using three different approaches viz. 1. ELM and GA-ELM 2. GA-ELM and GA-FELM 3. GA-FELM and GA-existing classifier. The result analysis shows that classification accuracy is improved with 9% while reducing 62% features.
基于多级参数优化遗传算法的模糊极值学习机特征子集优选
本文的关键目标是设计一种混合遗传算法的模糊极限学习机分类器(GA-FELM)模型,该模型通过多级参数优化技术选择最优特征子集。特征子集选择是模式分类和知识发现问题中的一项重要任务。系统的泛化性能不仅取决于最优特征,还取决于分类器(学习算法)。因此,选择一种快速高效的分类器是一项重要的任务。研究证实,极限学习机(extreme learning machine, ELM)具有优越、准确的分类能力。然而,ELM无法处理不确定数据。其中一种替代方案是模糊ELM,它结合了模糊逻辑和ELM的优点。GA-FELM能够通过最小化特征数来实现分类精度最大化,从而解决维数问题、优化问题和加权分类问题。为了验证GA-FELM的效率,使用三种不同的方法来评估比较性能,即:1。ELM和GA-ELM 2。GA-ELM和GA-FELMGA-FELM和GA-existing分类器。结果分析表明,分类准确率提高9%,特征减少62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信