Automatic Authorship Classification for German Lyrics Using Naïve Bayes

Akshay Mendhakar, Mesian Tilmatine
{"title":"Automatic Authorship Classification for German Lyrics Using Naïve Bayes","authors":"Akshay Mendhakar, Mesian Tilmatine","doi":"10.21248/jlcl.36.2023.242","DOIUrl":null,"url":null,"abstract":"Text classification is a prevalent and essential machine-learning task. Machine learning classifiers have developed immensely since their inception. The naïve Bayes classifier is one of the most prominent supervised machine learning classifiers. In this experiment, we highlight the performance of Naïve Bayes for classifying of authors/artists on the German lyrics corpus (“Songkorpus”) and compare the classification results with other classifier algorithms. The corpus of investigation consists of six artists with 970 songs in total. Bayes model evaluation measures revealed a precision of 0.91, recall of 0.94, and F1-measure of 0.9. Furthermore, the classification performance with other classifier algorithms did not reveal any statistically significant difference in performance. The results of the study add to the high volume of reports on the classification accuracy of Naive Bayes for the task of lyrical classification.","PeriodicalId":137584,"journal":{"name":"Journal for Language Technology and Computational Linguistics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Language Technology and Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.36.2023.242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text classification is a prevalent and essential machine-learning task. Machine learning classifiers have developed immensely since their inception. The naïve Bayes classifier is one of the most prominent supervised machine learning classifiers. In this experiment, we highlight the performance of Naïve Bayes for classifying of authors/artists on the German lyrics corpus (“Songkorpus”) and compare the classification results with other classifier algorithms. The corpus of investigation consists of six artists with 970 songs in total. Bayes model evaluation measures revealed a precision of 0.91, recall of 0.94, and F1-measure of 0.9. Furthermore, the classification performance with other classifier algorithms did not reveal any statistically significant difference in performance. The results of the study add to the high volume of reports on the classification accuracy of Naive Bayes for the task of lyrical classification.
使用Naïve贝叶斯的德国歌词自动作者分类
文本分类是一项普遍而重要的机器学习任务。机器学习分类器从一开始就有了很大的发展。naïve贝叶斯分类器是最著名的监督机器学习分类器之一。在这个实验中,我们突出了Naïve贝叶斯在德国歌词语料库(“Songkorpus”)上对作者/艺术家进行分类的性能,并将分类结果与其他分类器算法进行了比较。调查语料库由6位艺术家组成,共970首歌曲。贝叶斯模型评价指标的精度为0.91,召回率为0.94,F1-measure为0.9。此外,与其他分类器算法的分类性能没有显示任何统计学上的显著差异。该研究结果增加了大量关于朴素贝叶斯在抒情分类任务中的分类准确性的报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信