N. Chin, S. Lai, K. C. Chong, S. S. Lee, C. Koo, H. S. Thiam
{"title":"Treatment of Synthetic Produced Water using Hybrid Membrane Processes","authors":"N. Chin, S. Lai, K. C. Chong, S. S. Lee, C. Koo, H. S. Thiam","doi":"10.11113/AMST.V22N2.145","DOIUrl":null,"url":null,"abstract":"The study was concerned with the treatment of tank dewatering produced water using hybrid microfiltration (MF) and ultrafiltration (UF) processes. The pre-treatment MF membrane was fabricated with polyethersulfone (PES), n-methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP). The UF membranes meanwhile contained additional component, i.e., titanium dioxide (TiO2) nanoparticles in the range of zero to 1.0 wt.%. The membrane performances were analysed with respect to permeate flux, oil removal and flux recovery ratio. An increase in TiO2 nanoparticles enhanced the pore formation, porosity and pure water permeability due to improved hydrophilicity. The permeate flux of UF membranes increased with the increase of TiO2 nanoparticles and pressure. The oil removal rate by MF process was only 52.35%, whereas the oil rejection efficiency was between 82.34% and 95.71% for UF process. It should be highlighted that the overall oil removal rate could achieve as high as 97.96%. Based on the results, the PES membrane incorporated with 1.0 wt.% TiO2 was proved to be the most promising membrane at a transmembrane pressure of 3 bar. Although 1.0 M NaOH solution could be used as cleaning agent to recover membrane water flux, it is not capable of achieving good results as only 52.18% recovery rate was obtained.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Membrane Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/AMST.V22N2.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The study was concerned with the treatment of tank dewatering produced water using hybrid microfiltration (MF) and ultrafiltration (UF) processes. The pre-treatment MF membrane was fabricated with polyethersulfone (PES), n-methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP). The UF membranes meanwhile contained additional component, i.e., titanium dioxide (TiO2) nanoparticles in the range of zero to 1.0 wt.%. The membrane performances were analysed with respect to permeate flux, oil removal and flux recovery ratio. An increase in TiO2 nanoparticles enhanced the pore formation, porosity and pure water permeability due to improved hydrophilicity. The permeate flux of UF membranes increased with the increase of TiO2 nanoparticles and pressure. The oil removal rate by MF process was only 52.35%, whereas the oil rejection efficiency was between 82.34% and 95.71% for UF process. It should be highlighted that the overall oil removal rate could achieve as high as 97.96%. Based on the results, the PES membrane incorporated with 1.0 wt.% TiO2 was proved to be the most promising membrane at a transmembrane pressure of 3 bar. Although 1.0 M NaOH solution could be used as cleaning agent to recover membrane water flux, it is not capable of achieving good results as only 52.18% recovery rate was obtained.