Data augmentation and feature extraction using variational autoencoder for acoustic modeling

H. Nishizaki
{"title":"Data augmentation and feature extraction using variational autoencoder for acoustic modeling","authors":"H. Nishizaki","doi":"10.1109/APSIPA.2017.8282225","DOIUrl":null,"url":null,"abstract":"A data augmentation and feature extraction method using a variational autoencoder (VAE) for acoustic modeling is described. A VAE is a generative model based on variational Bayesian learning using a deep learning framework. A VAE can extract latent values its input variables to generate new information. VAEs are widely used to generate pictures and sentences. In this paper, a VAE is applied to speech corpus data augmentation and feature vector extraction from speech for acoustic modeling. First, the size of a speech corpus is doubled by encoding latent variables extracted from original utterances using a VAE framework. The latent variables extracted from speech waveforms have latent \"meanings\" of the waveforms. Therefore, latent variables can be used as acoustic features for automatic speech recognition (ASR). This paper experimentally shows the effectiveness of data augmentation using a VAE framework and that latent variable-based features can be utilized in ASR.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

A data augmentation and feature extraction method using a variational autoencoder (VAE) for acoustic modeling is described. A VAE is a generative model based on variational Bayesian learning using a deep learning framework. A VAE can extract latent values its input variables to generate new information. VAEs are widely used to generate pictures and sentences. In this paper, a VAE is applied to speech corpus data augmentation and feature vector extraction from speech for acoustic modeling. First, the size of a speech corpus is doubled by encoding latent variables extracted from original utterances using a VAE framework. The latent variables extracted from speech waveforms have latent "meanings" of the waveforms. Therefore, latent variables can be used as acoustic features for automatic speech recognition (ASR). This paper experimentally shows the effectiveness of data augmentation using a VAE framework and that latent variable-based features can be utilized in ASR.
基于变分自编码器的声学建模数据增强与特征提取
描述了一种利用变分自编码器(VAE)进行声学建模的数据增强和特征提取方法。VAE是使用深度学习框架的基于变分贝叶斯学习的生成模型。VAE可以从输入变量中提取潜在值来生成新的信息。VAEs被广泛用于生成图片和句子。本文将VAE应用于语音语料库数据增强和语音特征向量提取,用于声学建模。首先,通过使用VAE框架对从原始话语中提取的潜在变量进行编码,使语音语料库的大小增加一倍。从语音波形中提取的潜在变量具有波形的潜在“意义”。因此,潜在变量可以作为自动语音识别(ASR)的声学特征。本文通过实验验证了基于VAE框架的数据增强的有效性,以及基于潜变量的特征在ASR中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信