Markov face models

S. Dass, Anil K. Jain
{"title":"Markov face models","authors":"S. Dass, Anil K. Jain","doi":"10.1109/ICCV.2001.937692","DOIUrl":null,"url":null,"abstract":"The spatial distribution of gray level intensities in an image can be naturally modeled using Markov random field (MRF) models. We develop and investigate the performance of face detection algorithms derived from MRF considerations. For enhanced detection, the MRF models are defined for every permutation of site indices (pixels) in the image. We find the optimal permutation that provides maximum discriminatory power to identify faces from nonfaces. The methodology presented here is a generalization of the face detection algorithm described previously where a most discriminating Markov chain model was used. The MRF models successfully detect faces in a number of test images.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The spatial distribution of gray level intensities in an image can be naturally modeled using Markov random field (MRF) models. We develop and investigate the performance of face detection algorithms derived from MRF considerations. For enhanced detection, the MRF models are defined for every permutation of site indices (pixels) in the image. We find the optimal permutation that provides maximum discriminatory power to identify faces from nonfaces. The methodology presented here is a generalization of the face detection algorithm described previously where a most discriminating Markov chain model was used. The MRF models successfully detect faces in a number of test images.
马尔可夫面部模型
利用马尔可夫随机场(MRF)模型可以很自然地对图像中灰度强度的空间分布进行建模。我们开发并研究了基于磁共振成像的人脸检测算法的性能。为了增强检测,为图像中每个位置索引(像素)的排列定义了MRF模型。我们找到了最优排列,提供最大的区分能力,以识别人脸和非人脸。这里提出的方法是对前面描述的人脸检测算法的推广,其中使用了最具判别性的马尔可夫链模型。MRF模型成功地检测了许多测试图像中的人脸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信