Low-Key Shallow Learning Voice Spoofing Detection System

Dalal Ali, S. Al-Shareeda, Najla Abdulrahman
{"title":"Low-Key Shallow Learning Voice Spoofing Detection System","authors":"Dalal Ali, S. Al-Shareeda, Najla Abdulrahman","doi":"10.1109/MENACOMM57252.2022.9998199","DOIUrl":null,"url":null,"abstract":"This paper creates a Gaussian shallow learning Mixture Model (GMM) voice-replay detector using the MATLAB low-key machine learning and statistics libraries. Our model extracts the Mel frequency cepstrum coefficients (MFCC) and constant Q cepstrum coefficients (CQCC) from the input voice signal in the front-end feature extraction stage. The collected characteristics are fed to the constructed GMM classifier to categorize the input voice as either authentic from a live source or replayed from a prerecorded source. The GMM is trained using large datasets of voice feature samples representing both classes. The classifier’s performance is measured using the Equal Error Rate (%EER) metric. To optimize performance, we subject the trained GMM to substantial development and assessment datasets in diverse scenarios and settings of reduction, normalization, and filtration. The best %EER results for the GMM classifier are 11.2237% for the development set and 22.5429% for the evaluation set.","PeriodicalId":332834,"journal":{"name":"2022 4th IEEE Middle East and North Africa COMMunications Conference (MENACOMM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th IEEE Middle East and North Africa COMMunications Conference (MENACOMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MENACOMM57252.2022.9998199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper creates a Gaussian shallow learning Mixture Model (GMM) voice-replay detector using the MATLAB low-key machine learning and statistics libraries. Our model extracts the Mel frequency cepstrum coefficients (MFCC) and constant Q cepstrum coefficients (CQCC) from the input voice signal in the front-end feature extraction stage. The collected characteristics are fed to the constructed GMM classifier to categorize the input voice as either authentic from a live source or replayed from a prerecorded source. The GMM is trained using large datasets of voice feature samples representing both classes. The classifier’s performance is measured using the Equal Error Rate (%EER) metric. To optimize performance, we subject the trained GMM to substantial development and assessment datasets in diverse scenarios and settings of reduction, normalization, and filtration. The best %EER results for the GMM classifier are 11.2237% for the development set and 22.5429% for the evaluation set.
低调浅学习语音欺骗检测系统
本文利用MATLAB低调的机器学习和统计库创建了一个高斯浅学习混合模型(GMM)语音重播检测器。该模型在前端特征提取阶段提取输入语音信号的Mel频率倒频谱系数(MFCC)和恒Q倒频谱系数(CQCC)。收集到的特征被馈送到构建的GMM分类器中,以将输入语音分类为来自实时源的真实声音或来自预先录制源的重播声音。GMM使用代表这两个类别的语音特征样本的大型数据集进行训练。分类器的性能使用相等错误率(%EER)度量来衡量。为了优化性能,我们对训练好的GMM进行了大量的开发和评估数据集,在不同的场景和设置下进行了约简、归一化和过滤。GMM分类器的最佳识别率为开发集11.227%,评价集22.5429%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信