Local linear convergence of stochastic higher-order methods for convex optimization

D. Lupu, I. Necoara
{"title":"Local linear convergence of stochastic higher-order methods for convex optimization","authors":"D. Lupu, I. Necoara","doi":"10.23919/ecc54610.2021.9654966","DOIUrl":null,"url":null,"abstract":"We propose a stochastic higher-order algorithm for solving finite sum convex optimization problems. Our algorithmic framework is based on the notion of stochastic higher-order upper bound approximations of the finite sum objective function. For building such a framework we only require that this bound approximate the objective function up to an error that is p times differentiable and has a Lipschitz continuous p derivative. This leads to a stochastic higher-order majorization-minimization algorithm, which we call SHOM. We show that the algorithm SHOM achieves local linear convergence rate for the function values provided that the finite sum objective function is uniformly convex. Numerical simulations confirm the efficiency of our method.","PeriodicalId":105499,"journal":{"name":"2021 European Control Conference (ECC)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ecc54610.2021.9654966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a stochastic higher-order algorithm for solving finite sum convex optimization problems. Our algorithmic framework is based on the notion of stochastic higher-order upper bound approximations of the finite sum objective function. For building such a framework we only require that this bound approximate the objective function up to an error that is p times differentiable and has a Lipschitz continuous p derivative. This leads to a stochastic higher-order majorization-minimization algorithm, which we call SHOM. We show that the algorithm SHOM achieves local linear convergence rate for the function values provided that the finite sum objective function is uniformly convex. Numerical simulations confirm the efficiency of our method.
凸优化的随机高阶方法的局部线性收敛性
提出了一种求解有限和凸优化问题的随机高阶算法。我们的算法框架是基于有限和目标函数的随机高阶上界近似的概念。为了建立这样一个框架,我们只要求这个界近似于目标函数直到误差是p倍可微并且有一个Lipschitz连续p阶导数。这就产生了一种随机的高阶最大化最小化算法,我们称之为SHOM。我们证明了在有限和目标函数一致凸的条件下,算法对函数值达到了局部线性收敛速率。数值模拟验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信