On the modelling of ranking algorithms in probabilistic datalog

DBRank '13 Pub Date : 2013-08-30 DOI:10.1145/2524828.2524832
T. Roelleke, Marco Bonzanini, Miguel Martinez-Alvarez
{"title":"On the modelling of ranking algorithms in probabilistic datalog","authors":"T. Roelleke, Marco Bonzanini, Miguel Martinez-Alvarez","doi":"10.1145/2524828.2524832","DOIUrl":null,"url":null,"abstract":"TF-IDF, BM25, language modelling (LM), and divergence-from-randomness (DFR) are popular ranking models. Providing logical abstraction for information search is important, but the implementation of ranking algorithms in logical abstraction layers such as probabilistic Datalog leads to many challenges regarding expressiveness and scalability. Though the ranking algorithms have probabilistic roots, the ranking score often is not probabilistic, leading to unsafe programs from a probabilistic point of view. In this paper, we describe the evolution of probabilistic Datalog to provide concepts required for modelling ranking algorithms.","PeriodicalId":206590,"journal":{"name":"DBRank '13","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DBRank '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2524828.2524832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

TF-IDF, BM25, language modelling (LM), and divergence-from-randomness (DFR) are popular ranking models. Providing logical abstraction for information search is important, but the implementation of ranking algorithms in logical abstraction layers such as probabilistic Datalog leads to many challenges regarding expressiveness and scalability. Though the ranking algorithms have probabilistic roots, the ranking score often is not probabilistic, leading to unsafe programs from a probabilistic point of view. In this paper, we describe the evolution of probabilistic Datalog to provide concepts required for modelling ranking algorithms.
概率数据中排序算法的建模研究
TF-IDF、BM25、语言建模(LM)和随机发散度(DFR)是常用的排名模型。为信息搜索提供逻辑抽象是很重要的,但是在逻辑抽象层(如probabilistic Datalog)中实现排序算法会导致许多关于表达性和可伸缩性的挑战。虽然排名算法具有概率根,但排名得分通常不是概率性的,从概率的角度来看,这导致了不安全的程序。在本文中,我们描述了概率数据的演变,以提供建模排序算法所需的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信