Mission adaptable autonomous vehicles

I. Schiller, J. Draper
{"title":"Mission adaptable autonomous vehicles","authors":"I. Schiller, J. Draper","doi":"10.1109/ICNN.1991.163340","DOIUrl":null,"url":null,"abstract":"The authors discuss lessons learned on a neural autonomous simulator project that can be applied to autonomous underwater vehicles (AUVs). They developed a neural network (NN)-based unmanned air vehicle (UAV) navigation demonstration. The UAV simulation shows friendly flight corridors, enemy air-defense sites and the UAV mission targets. The UAV navigates in this hostile environment and reacts to unexpected threats. The study concentrated on the feasibility for noncomputer experts to prepare the UAVs for the specialized missions dictated by mission requirements and the battle situation, such as SAM sites and goal locations, corridors or way points. It was shown that NNs are successful in operating UAVs, and that the mission success rate is improved over fixed way point to way point flying. The simulation shows the potential for enhancing AUV survivability in hostile environments.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The authors discuss lessons learned on a neural autonomous simulator project that can be applied to autonomous underwater vehicles (AUVs). They developed a neural network (NN)-based unmanned air vehicle (UAV) navigation demonstration. The UAV simulation shows friendly flight corridors, enemy air-defense sites and the UAV mission targets. The UAV navigates in this hostile environment and reacts to unexpected threats. The study concentrated on the feasibility for noncomputer experts to prepare the UAVs for the specialized missions dictated by mission requirements and the battle situation, such as SAM sites and goal locations, corridors or way points. It was shown that NNs are successful in operating UAVs, and that the mission success rate is improved over fixed way point to way point flying. The simulation shows the potential for enhancing AUV survivability in hostile environments.<>
任务适应性自动驾驶汽车
作者讨论了一个可以应用于自主水下航行器(auv)的神经自主模拟器项目的经验教训。他们开发了一种基于神经网络(NN)的无人机(UAV)导航演示。无人机仿真显示了友方飞行走廊、敌方防空阵地和无人机任务目标。无人机在这种敌对环境中导航,并对意外威胁作出反应。该研究集中在非计算机专家为任务要求和战斗情况规定的特殊任务准备无人机的可行性上,例如地对空导弹地点和目标位置、走廊或路径点。结果表明,神经网络在无人机操作中是成功的,并且在固定路径点对路径点飞行中提高了任务成功率。仿真结果显示了提高水下航行器在恶劣环境下生存能力的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信