A self-stabilizing 2-minimal dominating set algorithm based on loop composition in networks of girth at least 7

Syohei Maruyama, Y. Sudo, S. Kamei, H. Kakugawa
{"title":"A self-stabilizing 2-minimal dominating set algorithm based on loop composition in networks of girth at least 7","authors":"Syohei Maruyama, Y. Sudo, S. Kamei, H. Kakugawa","doi":"10.1109/ipdps53621.2022.00114","DOIUrl":null,"url":null,"abstract":"We propose a silent self-stabilizing asynchronous distributed algorithm to find a 2-minimal dominating set (2-MDS) in networks of girth at least 7. Given a graph <tex>$G=(V, E)$</tex>, a 2-MDS of <tex>$G$</tex> is a minimal dominating set <tex>$D\\subseteq V$</tex> such that <tex>$D\\backslash \\{p_{i},p_{j}\\}\\cup\\{p_{z}\\}$</tex> is not a dominating set for any nodes <tex>$p_{i},p_{j}\\in L (p_{i}\\neq p_{j})$</tex> and <tex>$p_{z}\\ /{\\!\\!\\!\\in} D$</tex>. The girth is the length of the shortest cycles in the graph. We assume that the processes have unique identifiers. The proposed algorithm constructs a 2-MDS in the networks of girth at least 7 under the weakly fair distributed daemon. The time complexity is <tex>$O(nH)$</tex> rounds, and the space complexity is <tex>$O(\\log n)$</tex> bits per process, where <tex>$n$</tex> is the number of processes and <tex>$H$</tex> is the diameter of the network.","PeriodicalId":321801,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipdps53621.2022.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a silent self-stabilizing asynchronous distributed algorithm to find a 2-minimal dominating set (2-MDS) in networks of girth at least 7. Given a graph $G=(V, E)$, a 2-MDS of $G$ is a minimal dominating set $D\subseteq V$ such that $D\backslash \{p_{i},p_{j}\}\cup\{p_{z}\}$ is not a dominating set for any nodes $p_{i},p_{j}\in L (p_{i}\neq p_{j})$ and $p_{z}\ /{\!\!\!\in} D$. The girth is the length of the shortest cycles in the graph. We assume that the processes have unique identifiers. The proposed algorithm constructs a 2-MDS in the networks of girth at least 7 under the weakly fair distributed daemon. The time complexity is $O(nH)$ rounds, and the space complexity is $O(\log n)$ bits per process, where $n$ is the number of processes and $H$ is the diameter of the network.
周长至少为7的网络中基于回路构成的自稳定2-极小支配集算法
提出了一种静默自稳定异步分布式算法,用于在周长至少为7的网络中寻找2-极小支配集(2-MDS)。给定一个图$G=(V, E)$, $G$的2-MDS是一个最小支配集$D\subseteq V$,使得$D\backslash \{p_{i},p_{j}\}\cup\{p_{z}\}$不是任何节点$p_{i},p_{j}\in L (p_{i}\neq p_{j})$和$p_{z}\ /{\!\!\!\in} D$的支配集。周长是图中最短周期的长度。我们假设进程具有唯一标识符。该算法在弱公平分布式守护进程下,在周长至少为7的网络中构造一个2-MDS。时间复杂度为$O(nH)$轮,空间复杂度为$O(\log n)$位/进程,其中$n$为进程数,$H$为网络直径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信