Reduction of Hydraulic Friction in Confined Flows by Laser Texturing: Experiments and Theoretical Validation

Avinash Kumar, S. Datta, D. Kalyanasundaram
{"title":"Reduction of Hydraulic Friction in Confined Flows by Laser Texturing: Experiments and Theoretical Validation","authors":"Avinash Kumar, S. Datta, D. Kalyanasundaram","doi":"10.1115/ICNMM2018-7740","DOIUrl":null,"url":null,"abstract":"Hydraulic friction reduction in a microchannel due to superhydrophobic texturing of its walls was studied theoretically and experimentally. A modified Poiseuille equation formulated from an earlier-established semi-analytical approach to model texturing of slip lengths and the “gas cushion model” was used to predict the hydraulic conductance of a microchannel. An experimental setup with a microfluidic flow cell consisting of syringe pump, pressure manometer and tubing measured the pressure drop at different flow rates through a microchannel. The top and bottom walls of the microchannel was textured with micro-pits using nanosecond pulsed laser on the titanium alloy Ti6Al4V. A very high contact angle was observed on the textured surfaces suggesting entrapped gas bubbles. Liquid slippage leading to reduced hydraulic friction is attributable to the bubbles. The pressure-flow rate characteristics of the microchannels confirm friction reduction and also demonstrate a reasonable agreement with the theoretical predictions from the developed fluid dynamic model.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"44 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydraulic friction reduction in a microchannel due to superhydrophobic texturing of its walls was studied theoretically and experimentally. A modified Poiseuille equation formulated from an earlier-established semi-analytical approach to model texturing of slip lengths and the “gas cushion model” was used to predict the hydraulic conductance of a microchannel. An experimental setup with a microfluidic flow cell consisting of syringe pump, pressure manometer and tubing measured the pressure drop at different flow rates through a microchannel. The top and bottom walls of the microchannel was textured with micro-pits using nanosecond pulsed laser on the titanium alloy Ti6Al4V. A very high contact angle was observed on the textured surfaces suggesting entrapped gas bubbles. Liquid slippage leading to reduced hydraulic friction is attributable to the bubbles. The pressure-flow rate characteristics of the microchannels confirm friction reduction and also demonstrate a reasonable agreement with the theoretical predictions from the developed fluid dynamic model.
激光织构减少受限流动中水力摩擦:实验与理论验证
本文从理论和实验两方面研究了微通道壁面超疏水织构对微通道水力摩擦的影响。利用先前建立的半解析方法推导出的修正Poiseuille方程和“气垫模型”来预测微通道的水力导度。采用注射泵、压力计和管道组成的微流体流动池实验装置,测量了微通道在不同流速下的压降。利用纳秒脉冲激光在钛合金Ti6Al4V上对微通道的顶、底壁进行微坑织织。在有纹理的表面上观察到非常高的接触角,表明存在气泡。导致水力摩擦减小的液体滑移可归因于气泡。微通道的压力-流量特性证实了摩擦的减少,并与所建立的流体动力学模型的理论预测相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信