Limit Action Space to Enhance Drone Control with Deep Reinforcement Learning

Sooyoung Jang, Noh-Sam Park
{"title":"Limit Action Space to Enhance Drone Control with Deep Reinforcement Learning","authors":"Sooyoung Jang, Noh-Sam Park","doi":"10.1109/ICTC49870.2020.9289571","DOIUrl":null,"url":null,"abstract":"Although many research progresses on deep reinforcement learning, it is not yet perfect. It may take too much time or even fail to solve the problem. Therefore, simplifying the problem by intentionally limiting the agent’s action space should help train the agent efficiently and effectively. To verify that, in this paper, we analyze the performances of various action space designs for controlling a drone with deep reinforcement learning. We have designed six different action spaces according to the degree of freedom to analyze the effect of limiting the agent’s action space on performance metrics such as travel distance and time, goal rate, and total reward. We show that by limiting the degree of freedom, the agent learns to reach the goal faster with less travel distance and achieve a higher goal rate and reward.","PeriodicalId":282243,"journal":{"name":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC49870.2020.9289571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although many research progresses on deep reinforcement learning, it is not yet perfect. It may take too much time or even fail to solve the problem. Therefore, simplifying the problem by intentionally limiting the agent’s action space should help train the agent efficiently and effectively. To verify that, in this paper, we analyze the performances of various action space designs for controlling a drone with deep reinforcement learning. We have designed six different action spaces according to the degree of freedom to analyze the effect of limiting the agent’s action space on performance metrics such as travel distance and time, goal rate, and total reward. We show that by limiting the degree of freedom, the agent learns to reach the goal faster with less travel distance and achieve a higher goal rate and reward.
限制行动空间,用深度强化学习增强无人机控制
虽然深度强化学习的研究取得了许多进展,但它还不够完善。这可能会花费太多的时间,甚至无法解决问题。因此,通过有意限制代理的动作空间来简化问题应该有助于高效地训练代理。为了验证这一点,在本文中,我们分析了使用深度强化学习控制无人机的各种动作空间设计的性能。我们根据自由度设计了6个不同的行动空间来分析限制代理的行动空间对诸如旅行距离和时间、目标率和总奖励等性能指标的影响。我们证明,通过限制自由度,智能体学会以更少的行程距离更快地到达目标,并获得更高的目标率和奖励。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信