Feasibility Study of Port Scan Detection on Encrypted Data

P. Chandrashekar, Sashank Dara, V. Muralidhara
{"title":"Feasibility Study of Port Scan Detection on Encrypted Data","authors":"P. Chandrashekar, Sashank Dara, V. Muralidhara","doi":"10.1109/CCEM.2015.18","DOIUrl":null,"url":null,"abstract":"We explore the feasibility of implementing port scan detection on encrypted data to protect confidentiality of sensitive network data. We experiment with four popular Port Scan detection algorithms namely Classic Version (and its Time Variant), Threshold Random Walk (TRW), Bayesian Logistic Regression (BLR). We also provide experimental results on performance and storage of our query based implementation on network flow data. Our key observation is that for complex operations on encrypted data Onion-layered encryption system like Crypt DB does not scale well.","PeriodicalId":339923,"journal":{"name":"2015 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCEM.2015.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We explore the feasibility of implementing port scan detection on encrypted data to protect confidentiality of sensitive network data. We experiment with four popular Port Scan detection algorithms namely Classic Version (and its Time Variant), Threshold Random Walk (TRW), Bayesian Logistic Regression (BLR). We also provide experimental results on performance and storage of our query based implementation on network flow data. Our key observation is that for complex operations on encrypted data Onion-layered encryption system like Crypt DB does not scale well.
加密数据端口扫描检测的可行性研究
我们探索在加密数据上实现端口扫描检测的可行性,以保护敏感网络数据的机密性。我们实验了四种流行的端口扫描检测算法,即经典版本(及其时变),阈值随机漫步(TRW),贝叶斯逻辑回归(BLR)。我们还提供了基于网络流数据的查询实现的性能和存储的实验结果。我们的主要观察是,对于加密数据的复杂操作,像Crypt DB这样的洋葱层加密系统的可扩展性不好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信