A Set of Chain Code Based Features for Writer Recognition

I. Siddiqi, N. Vincent
{"title":"A Set of Chain Code Based Features for Writer Recognition","authors":"I. Siddiqi, N. Vincent","doi":"10.1109/ICDAR.2009.136","DOIUrl":null,"url":null,"abstract":"This communication presents an effective method for writer recognition in handwritten documents. We have introduced a set of features that are extracted from the contours of handwritten images at different observation levels. At the global level, we extract the histograms of the chain code, the first and second order differential chain codes and, the histogram of the curvature indices at each point of the contour of handwriting. At the local level, the handwritten text is divided into a large number of small adaptive windows and within each window the contribution of each of the eight directions (and their differentials) is counted in the corresponding histograms. Two writings are then compared by computing the distances between their respective histograms. The system trained and tested on two different data sets of 650 and 225 writers respectively, exhibited promising results on writer identification and verification.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

This communication presents an effective method for writer recognition in handwritten documents. We have introduced a set of features that are extracted from the contours of handwritten images at different observation levels. At the global level, we extract the histograms of the chain code, the first and second order differential chain codes and, the histogram of the curvature indices at each point of the contour of handwriting. At the local level, the handwritten text is divided into a large number of small adaptive windows and within each window the contribution of each of the eight directions (and their differentials) is counted in the corresponding histograms. Two writings are then compared by computing the distances between their respective histograms. The system trained and tested on two different data sets of 650 and 225 writers respectively, exhibited promising results on writer identification and verification.
一套基于链码特征的写作者识别方法
提出了一种有效的手写体识别方法。我们介绍了一组从不同观测水平的手写图像的轮廓中提取的特征。在全局层面上,我们提取了链码直方图、一阶和二阶微分链码直方图以及笔迹轮廓各点曲率指数直方图。在局部级别,手写文本被划分为大量的小自适应窗口,在每个窗口内,八个方向的贡献(及其差异)在相应的直方图中被计算。然后通过计算各自直方图之间的距离来比较两篇文章。该系统分别在650个和225个写作者的数据集上进行了训练和测试,在写作者识别和验证方面显示出良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信