Compressing Head-Related Transfer Function databases by Eigen decomposition

Camilo Arévalo, J. Villegas
{"title":"Compressing Head-Related Transfer Function databases by Eigen decomposition","authors":"Camilo Arévalo, J. Villegas","doi":"10.1109/MMSP48831.2020.9287134","DOIUrl":null,"url":null,"abstract":"A method to reduce the memory footprint of Head- Related Transfer Functions (HRTFs) is introduced. Based on an Eigen decomposition of HRTFs, the proposed method is capable of reducing a database comprising 6,344 measurements from 36.30 MB to 2.41MB (about a 15:1 compression ratio). Synthetic HRTFs in the compressed database were set to have less than 1dB spectral distortion between 0.1 and 16 kHz. The differences between the compressed measurements with those in the original database do not seem to translate into degradation of perceptual location accuracy. The high degree of compression obtained with this method allows the inclusion of interpolated HRTFs in databases for easing the real-time audio spatialization in Virtual Reality (VR).","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A method to reduce the memory footprint of Head- Related Transfer Functions (HRTFs) is introduced. Based on an Eigen decomposition of HRTFs, the proposed method is capable of reducing a database comprising 6,344 measurements from 36.30 MB to 2.41MB (about a 15:1 compression ratio). Synthetic HRTFs in the compressed database were set to have less than 1dB spectral distortion between 0.1 and 16 kHz. The differences between the compressed measurements with those in the original database do not seem to translate into degradation of perceptual location accuracy. The high degree of compression obtained with this method allows the inclusion of interpolated HRTFs in databases for easing the real-time audio spatialization in Virtual Reality (VR).
基于特征分解的头部相关传递函数数据库压缩
介绍了一种减少头部相关传递函数(hrtf)内存占用的方法。基于hrtf的特征分解,该方法能够将包含6344个测量值的数据库从36.30 MB减少到2.41MB(约15:1的压缩比)。将压缩数据库中的合成hrtf设置为在0.1和16 kHz之间具有小于1dB的频谱失真。压缩测量值与原始数据库中的测量值之间的差异似乎不会转化为感知定位精度的降低。该方法获得的高压缩度允许在数据库中包含插值的hrtf,以缓解虚拟现实(VR)中的实时音频空间化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信