Intuitionistic fuzzy evaluation of artificial neural network model

T. Petkov, Veselina Bureva, Stanislav Popov
{"title":"Intuitionistic fuzzy evaluation of artificial neural network model","authors":"T. Petkov, Veselina Bureva, Stanislav Popov","doi":"10.7546/nifs.2021.27.4.71-77","DOIUrl":null,"url":null,"abstract":"In this paper a method that evaluates a trained artificial neural network is presented. The learning type of an artificial neural network is supervised learning which requires labeled input training vectors. Labeled medical data is provided to train the network, where the labels can either be 1 if the person is alive, or 0 if the person has deceased. The data is divided into training and validation vectors. The validation input vectors are used to evaluate the model and the results are summarized by using intuitionistic fuzzy values.","PeriodicalId":433687,"journal":{"name":"Notes on Intuitionistic Fuzzy Sets","volume":"125 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Intuitionistic Fuzzy Sets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nifs.2021.27.4.71-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a method that evaluates a trained artificial neural network is presented. The learning type of an artificial neural network is supervised learning which requires labeled input training vectors. Labeled medical data is provided to train the network, where the labels can either be 1 if the person is alive, or 0 if the person has deceased. The data is divided into training and validation vectors. The validation input vectors are used to evaluate the model and the results are summarized by using intuitionistic fuzzy values.
人工神经网络模型的直觉模糊评价
本文提出了一种对训练好的人工神经网络进行评价的方法。人工神经网络的学习类型是监督学习,它需要标记输入训练向量。提供标记的医疗数据来训练网络,其中标签可以是1,如果该人还活着,或者是0,如果该人已经死亡。数据被分为训练向量和验证向量。使用验证输入向量对模型进行评价,并使用直觉模糊值对结果进行总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信