Carlos Vicente Niño Rondón, Diego Andrés Castellano Carvajal, B. M. Delgado, Sergio Alexander Castro Casadiego, Dinael Guevara Ibarra
{"title":"An Architecture for Microprocessor-Executable Skin Cancer Classification","authors":"Carlos Vicente Niño Rondón, Diego Andrés Castellano Carvajal, B. M. Delgado, Sergio Alexander Castro Casadiego, Dinael Guevara Ibarra","doi":"10.1109/I2CT57861.2023.10126432","DOIUrl":null,"url":null,"abstract":"Skin cancer ranks as the most common malignant tumor among all types of cancer. Melanoma accounts for 1% of all cancer cases. However, it is responsible for the majority of deaths from this type of cancer. According to the American Cancer Society, it is expected that 99,780 new cases of melanoma will be diagnosed and about 7,650 people will die from this type of cancer. This work presents an executable architecture on reduced plate systems for skin cancer classification, complemented with image enhancement and feature enhancement stages, information extraction using VGG16 network architecture, feature reduction applying Principal Component Analysis and classification stage using gradient augmented decision trees (XGBoost). The architecture was tested on Raspberry Pi 4B reduced board system and developed with Python programming language and open-source libraries. In turn, the images processed and used are part of the ISIC Challenge Dataset. An average power value of 2.93 W out of a maximum of 3.6 W was obtained in the execution of the diagnostic tool. In turn, the minimum required software architecture response time was 0.09 seconds. The demand for the execution of the diagnostic tool in the Central Processing Unit was on average 20.63 % over a maximum value of 24.5 % respectively. On the other hand, the results at the software level of the architecture were compared with the scientific literature and presented improvements of about 9 % in terms of accuracy in skin cancer classification. The diagnostic tool is replicable and affordable due to reduced hardware requirements and cost of implementation.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Skin cancer ranks as the most common malignant tumor among all types of cancer. Melanoma accounts for 1% of all cancer cases. However, it is responsible for the majority of deaths from this type of cancer. According to the American Cancer Society, it is expected that 99,780 new cases of melanoma will be diagnosed and about 7,650 people will die from this type of cancer. This work presents an executable architecture on reduced plate systems for skin cancer classification, complemented with image enhancement and feature enhancement stages, information extraction using VGG16 network architecture, feature reduction applying Principal Component Analysis and classification stage using gradient augmented decision trees (XGBoost). The architecture was tested on Raspberry Pi 4B reduced board system and developed with Python programming language and open-source libraries. In turn, the images processed and used are part of the ISIC Challenge Dataset. An average power value of 2.93 W out of a maximum of 3.6 W was obtained in the execution of the diagnostic tool. In turn, the minimum required software architecture response time was 0.09 seconds. The demand for the execution of the diagnostic tool in the Central Processing Unit was on average 20.63 % over a maximum value of 24.5 % respectively. On the other hand, the results at the software level of the architecture were compared with the scientific literature and presented improvements of about 9 % in terms of accuracy in skin cancer classification. The diagnostic tool is replicable and affordable due to reduced hardware requirements and cost of implementation.