Neuro-Fuzzy Actor Critic Reinforcement Learning for determination of optimal timing plans

L. Chong, M. Abbas
{"title":"Neuro-Fuzzy Actor Critic Reinforcement Learning for determination of optimal timing plans","authors":"L. Chong, M. Abbas","doi":"10.1109/ITSC.2010.5625260","DOIUrl":null,"url":null,"abstract":"The purpose of timing plan optimization is to decrease delay and increase the overall performance of transportation network. This paper presents an agent-based reinforcement learning framework to train optimization agents to take appropriate actions according to perceived traffic states. Neuro-Fuzzy Actor-Critic Reinforcement Learning (NFACRL) method is applied in isolated intersection control. The control agent gets knowledge of traffic states after the learning process and determines the optimal phase durations required to minimize vehicle delay at a given intersection.","PeriodicalId":176645,"journal":{"name":"13th International IEEE Conference on Intelligent Transportation Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International IEEE Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2010.5625260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The purpose of timing plan optimization is to decrease delay and increase the overall performance of transportation network. This paper presents an agent-based reinforcement learning framework to train optimization agents to take appropriate actions according to perceived traffic states. Neuro-Fuzzy Actor-Critic Reinforcement Learning (NFACRL) method is applied in isolated intersection control. The control agent gets knowledge of traffic states after the learning process and determines the optimal phase durations required to minimize vehicle delay at a given intersection.
神经模糊演员评价强化学习确定最佳时间计划
调度优化的目的是为了减少延误,提高交通网络的整体性能。本文提出了一种基于智能体的强化学习框架,用于训练优化智能体根据感知到的交通状态采取适当的行动。将神经模糊行为评价强化学习(NFACRL)方法应用于孤立交叉口控制。在学习过程后,控制智能体获得交通状态的知识,并确定在给定路口使车辆延误最小化所需的最优相位持续时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信