Research on virtual decomposition control of free-flying space robot with an object under nonholonomic constraints

Bo Xia, Gang Li, Shuang Yang, Xueqian Wang, Bin Liang
{"title":"Research on virtual decomposition control of free-flying space robot with an object under nonholonomic constraints","authors":"Bo Xia, Gang Li, Shuang Yang, Xueqian Wang, Bin Liang","doi":"10.1109/COASE.2017.8256306","DOIUrl":null,"url":null,"abstract":"This paper aims at solving the stable control issue of the free-flying space robot with an object when the orientation of space base is controlled but the position is out of control using the virtual decomposition control (VDC). According to the VDC principle, the entire system is conceptually divided into such subsystems: the object, the space base, the manipulator, the reaction wheel and the massless virtual manipulator. The last term is designed to solve the nonholonomic constraints of the whole system. Based on the mathematical model of the entire system, kinematics and dynamics of every subsystem from the object to the space base are analyzed. A virtual decomposition controller of each subsystem is simultaneously designed, and this controller and the corresponding subsystem structure a control subsystem of the whole robot. All subsystem controllers constitute the controller of the entire robot system, and the combination of this controller and the robot system is the virtual decomposition control system of this robot. Then it takes two steps to achieve its stability analysis — the virtual stability of each control subsystem and the stability analysis of the whole control system. Finally, the VDC system of the free-flying space robot with an object is simulated. Simulation results show that the VDC system is stable and effective.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper aims at solving the stable control issue of the free-flying space robot with an object when the orientation of space base is controlled but the position is out of control using the virtual decomposition control (VDC). According to the VDC principle, the entire system is conceptually divided into such subsystems: the object, the space base, the manipulator, the reaction wheel and the massless virtual manipulator. The last term is designed to solve the nonholonomic constraints of the whole system. Based on the mathematical model of the entire system, kinematics and dynamics of every subsystem from the object to the space base are analyzed. A virtual decomposition controller of each subsystem is simultaneously designed, and this controller and the corresponding subsystem structure a control subsystem of the whole robot. All subsystem controllers constitute the controller of the entire robot system, and the combination of this controller and the robot system is the virtual decomposition control system of this robot. Then it takes two steps to achieve its stability analysis — the virtual stability of each control subsystem and the stability analysis of the whole control system. Finally, the VDC system of the free-flying space robot with an object is simulated. Simulation results show that the VDC system is stable and effective.
非完整约束下带目标自由飞行空间机器人虚拟分解控制研究
本文旨在利用虚拟分解控制(VDC)解决空间基座方向被控制而位置失控时带物体自由飞行的空间机器人的稳定控制问题。根据VDC原理,将整个系统在概念上划分为物体子系统、空间基地子系统、机械手子系统、反作用轮子系统和无质量虚拟机械手子系统。最后一项用于求解整个系统的非完整约束。在建立整个系统数学模型的基础上,对从目标到空间基地的各个分系统进行了运动学和动力学分析。同时设计了各子系统的虚拟分解控制器,该控制器与相应的子系统构成了整个机器人的控制子系统。各子系统控制器构成了整个机器人系统的控制器,该控制器与机器人系统的结合就是该机器人的虚拟分解控制系统。然后分两个步骤对其进行稳定性分析——各控制子系统的虚拟稳定性分析和整个控制系统的稳定性分析。最后,对带物体自由飞行空间机器人的VDC系统进行了仿真。仿真结果表明,该系统稳定有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信