Pacer: Automated Feedback-Based Vertical Elasticity for Heterogeneous Soft Real-Time Workloads

Yu-An Chen, Geoffrey Phi C. Tran, A. Rittenbach, J. Walters, S. Crago
{"title":"Pacer: Automated Feedback-Based Vertical Elasticity for Heterogeneous Soft Real-Time Workloads","authors":"Yu-An Chen, Geoffrey Phi C. Tran, A. Rittenbach, J. Walters, S. Crago","doi":"10.1109/UCC.2018.00016","DOIUrl":null,"url":null,"abstract":"Cloud computing can be used to provide a virtualized platform for running various services, including soft real-time applications such as video streaming. To satisfy an application's real-time requirements, CPU resources are often allocated for the worst case, resulting in system under-utilization or overpaying to the cloud provider under the pay-as-you-go model. To solve this problem, we present Pacer, a framework that provides application developers a platform to implement custom virtual machine-level resource allocation algorithms that utilize real-time application-specific performance feedback from applications running in virtual machines. We also present two example resource allocation algorithms for Pacer that are based on additive-increase-multiplicative-decrease and self-tuning PID control. We apply Pacer to video stream object detection applications to show that Pacer can save more than 50% CPU utilization and use CPU resources more efficiently, while still meeting deadlines for real-time applications.","PeriodicalId":288232,"journal":{"name":"2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing (UCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC.2018.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud computing can be used to provide a virtualized platform for running various services, including soft real-time applications such as video streaming. To satisfy an application's real-time requirements, CPU resources are often allocated for the worst case, resulting in system under-utilization or overpaying to the cloud provider under the pay-as-you-go model. To solve this problem, we present Pacer, a framework that provides application developers a platform to implement custom virtual machine-level resource allocation algorithms that utilize real-time application-specific performance feedback from applications running in virtual machines. We also present two example resource allocation algorithms for Pacer that are based on additive-increase-multiplicative-decrease and self-tuning PID control. We apply Pacer to video stream object detection applications to show that Pacer can save more than 50% CPU utilization and use CPU resources more efficiently, while still meeting deadlines for real-time applications.
基于自动反馈的异构软实时工作负载垂直弹性
云计算可用于提供运行各种服务的虚拟化平台,包括视频流等软实时应用程序。为了满足应用程序的实时需求,通常会为最坏的情况分配CPU资源,从而导致系统利用率不足,或者在按需付费模式下向云提供商支付过高的费用。为了解决这个问题,我们提出了Pacer框架,它为应用程序开发人员提供了一个平台来实现自定义虚拟机级资源分配算法,该算法利用运行在虚拟机中的应用程序的实时特定于应用程序的性能反馈。我们还给出了两个基于加-增-乘-减和自整定PID控制的Pacer资源分配算法示例。我们将Pacer应用于视频流对象检测应用,表明Pacer可以节省50%以上的CPU利用率,更有效地利用CPU资源,同时仍然满足实时应用的截止日期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信