Average evolution and size-topology relations for coarsening 2d dry foams

A. Chieco, J. Sethna, D. Durian
{"title":"Average evolution and size-topology relations for coarsening 2d dry foams","authors":"A. Chieco, J. Sethna, D. Durian","doi":"10.3389/frsfm.2022.941811","DOIUrl":null,"url":null,"abstract":"Two-dimensional dry foams coarsen according to the von Neumann law as dA/dt ∝ (n − 6) where n is the number of sides of a bubble with area A. Such foams reach a self-similar scaling state where area and side-number distributions are stationary. Combining self-similarity with the von Neumann law, we derive time derivatives of moments of the bubble area distribution and a relation connecting area moments with averages of the side-number distribution that are weighted by powers of bubble area. To test these predictions, we collect and analyze high precision image data for a large number of bubbles squashed between parallel acrylic plates and allowed to coarsen into the self-similar scaling state. We find good agreement for moments ranging from 2–20.","PeriodicalId":409762,"journal":{"name":"Frontiers in Soft Matter","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Soft Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsfm.2022.941811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Two-dimensional dry foams coarsen according to the von Neumann law as dA/dt ∝ (n − 6) where n is the number of sides of a bubble with area A. Such foams reach a self-similar scaling state where area and side-number distributions are stationary. Combining self-similarity with the von Neumann law, we derive time derivatives of moments of the bubble area distribution and a relation connecting area moments with averages of the side-number distribution that are weighted by powers of bubble area. To test these predictions, we collect and analyze high precision image data for a large number of bubbles squashed between parallel acrylic plates and allowed to coarsen into the self-similar scaling state. We find good agreement for moments ranging from 2–20.
二维干泡沫粗化的平均演化及尺寸-拓扑关系
二维干泡沫根据冯·诺伊曼定律变粗为dA/dt∝(n−6),其中n为面积为a的气泡的边数。这种泡沫达到自相似的标度状态,面积和边数分布是平稳的。结合自相似和冯·诺依曼定律,导出了气泡面积分布矩的时间导数,以及气泡面积幂次加权后的边数分布矩与边数分布均值的关系。为了验证这些预测,我们收集和分析了大量气泡在平行亚克力板之间挤压并允许其粗化到自相似缩放状态的高精度图像数据。我们发现在2-20之间的时刻有很好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信