Demonstration of the Intelligent Mooring System for Floating Offshore Wind Turbines

Magnus Harrold, P. Thies, P. Halswell, L. Johanning, David Newsam, C. B. Ferreira
{"title":"Demonstration of the Intelligent Mooring System for Floating Offshore Wind Turbines","authors":"Magnus Harrold, P. Thies, P. Halswell, L. Johanning, David Newsam, C. B. Ferreira","doi":"10.1115/iowtc2019-7544","DOIUrl":null,"url":null,"abstract":"\n Existing mooring systems for floating offshore wind turbines are largely based on designs from the oil and gas industry. Even though these can ensure the safe station keeping of the floating wind platform, the design of the mooring system is currently largely conservative, leading to additional expense in an industry striving to achieve cost reduction. Recent interest in the usage of mooring materials with non-linear stiffness has shown that they have the potential to reduce peak line loads, ultimately reducing cost. This paper reports on the combined physical testing and numerical modeling of a hydraulic-based mooring component with these characteristics. The results suggest that the inclusion of the component as part of the OC4 semi-submersible platform can reduce the peak line loads by 10%. The paper also discusses a number of challenges associated with modeling and testing dynamic mooring materials.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Existing mooring systems for floating offshore wind turbines are largely based on designs from the oil and gas industry. Even though these can ensure the safe station keeping of the floating wind platform, the design of the mooring system is currently largely conservative, leading to additional expense in an industry striving to achieve cost reduction. Recent interest in the usage of mooring materials with non-linear stiffness has shown that they have the potential to reduce peak line loads, ultimately reducing cost. This paper reports on the combined physical testing and numerical modeling of a hydraulic-based mooring component with these characteristics. The results suggest that the inclusion of the component as part of the OC4 semi-submersible platform can reduce the peak line loads by 10%. The paper also discusses a number of challenges associated with modeling and testing dynamic mooring materials.
海上浮式风力机智能系泊系统演示
现有的浮式海上风力涡轮机系泊系统很大程度上是基于石油和天然气行业的设计。尽管这些可以确保浮式风平台的安全站位,但目前系泊系统的设计在很大程度上是保守的,这在一个努力实现成本降低的行业中导致了额外的费用。最近对非线性刚度系泊材料的使用的兴趣表明,它们有可能降低峰值线载荷,最终降低成本。本文报道了一种具有这些特性的液压系泊构件的物理试验与数值模拟相结合的方法。结果表明,将该组件作为OC4半潜式平台的一部分,可将峰值线载荷降低10%。本文还讨论了与动态系泊材料建模和测试相关的一些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信