{"title":"Diamonds","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvwh8dr6.49","DOIUrl":null,"url":null,"abstract":"This chapter investigates the notion of a diamond. The idea is that there should be a functor which “forgets the structure morphism to Zp.” The desired quotient in the example provided in the chapter exists in a category of sheaves on the site of perfectoid spaces with pro-étale covers. The chapter then defines pro-étale morphisms between perfectoid spaces. A morphism of perfectoid spaces is pro-étale if it is locally (on the source and target) affinoid pro-étale. The intuitive definition of diamonds involved the tilting functor in case of perfectoid spaces of characteristic 0. For this reason, diamonds are defined as certain pro-étale sheaves on the category of perfectoid spaces of characteristic p.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvwh8dr6.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter investigates the notion of a diamond. The idea is that there should be a functor which “forgets the structure morphism to Zp.” The desired quotient in the example provided in the chapter exists in a category of sheaves on the site of perfectoid spaces with pro-étale covers. The chapter then defines pro-étale morphisms between perfectoid spaces. A morphism of perfectoid spaces is pro-étale if it is locally (on the source and target) affinoid pro-étale. The intuitive definition of diamonds involved the tilting functor in case of perfectoid spaces of characteristic 0. For this reason, diamonds are defined as certain pro-étale sheaves on the category of perfectoid spaces of characteristic p.