Design of a Precision Agriculture Leakage Seeding System Based on Wireless Sensors

Jiaxin Zheng, Wencai Yang
{"title":"Design of a Precision Agriculture Leakage Seeding System Based on Wireless Sensors","authors":"Jiaxin Zheng, Wencai Yang","doi":"10.3991/IJOE.V14I05.8653","DOIUrl":null,"url":null,"abstract":"In light of the agricultural development in China, more attention has been paid to the studies about precision agriculture. The environmental factors such as temperature-humidity and soil humidity are the key influencing factors on crop growth, therefore, how to rapidly and accurately acquire the environmental information of crop growth and learn about their real-time growing environment is of vital importance. The wireless sensor networks (WSN) can make real-time environmental information acquisition as well as communication and processing of network environmental data. Based on this, the RSSI range-based positioning method was optimized in this paper in order to greatly improve its precision. To be specific, in this study, the particle swarm optimization (PSO) algorithm was firstly applied in the hybrid mutation strategy to make more accurate node positioning and significantly improve the evolutionary performance by enlarging the hunting zone; besides, through the use of WSN, the influencing parameters on crop growth such as soil humidity, and temperature-humidity etc. would be monitored; finally, to realize the precise location and derive the unseeded nodes, GPS was applied for accurate positioning, and the intelligence algorithm was adopted to determine the coordinate position of unknown nodes. At last, the actual field test indicates that the designed monitoring system in this paper satisfies the requirements for precise measurement, playing a positive role in promoting the development of precision agriculture.","PeriodicalId":387853,"journal":{"name":"Int. J. Online Eng.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Online Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/IJOE.V14I05.8653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In light of the agricultural development in China, more attention has been paid to the studies about precision agriculture. The environmental factors such as temperature-humidity and soil humidity are the key influencing factors on crop growth, therefore, how to rapidly and accurately acquire the environmental information of crop growth and learn about their real-time growing environment is of vital importance. The wireless sensor networks (WSN) can make real-time environmental information acquisition as well as communication and processing of network environmental data. Based on this, the RSSI range-based positioning method was optimized in this paper in order to greatly improve its precision. To be specific, in this study, the particle swarm optimization (PSO) algorithm was firstly applied in the hybrid mutation strategy to make more accurate node positioning and significantly improve the evolutionary performance by enlarging the hunting zone; besides, through the use of WSN, the influencing parameters on crop growth such as soil humidity, and temperature-humidity etc. would be monitored; finally, to realize the precise location and derive the unseeded nodes, GPS was applied for accurate positioning, and the intelligence algorithm was adopted to determine the coordinate position of unknown nodes. At last, the actual field test indicates that the designed monitoring system in this paper satisfies the requirements for precise measurement, playing a positive role in promoting the development of precision agriculture.
基于无线传感器的精准农业渗漏播种系统设计
随着中国农业的发展,精准农业的研究越来越受到重视。温湿度、土壤湿度等环境因子是影响作物生长的关键因素,因此,如何快速准确地获取作物生长的环境信息,实时了解其生长环境至关重要。无线传感器网络可以实时采集环境信息,并对网络环境数据进行通信和处理。在此基础上,本文对基于RSSI距离的定位方法进行了优化,大大提高了定位精度。具体而言,本研究首次将粒子群优化(PSO)算法应用于杂交突变策略中,通过扩大搜索区域,使节点定位更加精确,显著提高了进化性能;利用无线传感器网络监测土壤湿度、温湿度等对作物生长的影响参数;最后,利用GPS进行精确定位,利用智能算法确定未知节点的坐标位置,实现精确定位并导出非种子节点。最后,通过实际的现场测试表明,本文设计的监测系统满足了精准测量的要求,对精准农业的发展起到了积极的推动作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信