Image Captioning Using Python

Aalind Singh, Avinash Shah, Praveen Kumar, Himanshu Chaudhary, Abhishek Sharma, Akash Chaudhary, Abhinav Dixit
{"title":"Image Captioning Using Python","authors":"Aalind Singh, Avinash Shah, Praveen Kumar, Himanshu Chaudhary, Abhishek Sharma, Akash Chaudhary, Abhinav Dixit","doi":"10.1109/PIECON56912.2023.10085724","DOIUrl":null,"url":null,"abstract":"In the last few years, the problem of recognizing the objects and the context of the image has gained a rising interest. Image Captioning is a task of recognizing the context of the image and then generating a caption for it with proper grammar structure. Generating captions automatically will be helpful for visually impaired people to understand the picture better. To achieve this task a hybrid model is defined in this paper which uses CNN (Convolutional Neural Network) and LSTM (Long Short-Term Memory). The model will be trained using Flickr8K data sets with containing 8000 images and 5 captions for each image.","PeriodicalId":182428,"journal":{"name":"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIECON56912.2023.10085724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the last few years, the problem of recognizing the objects and the context of the image has gained a rising interest. Image Captioning is a task of recognizing the context of the image and then generating a caption for it with proper grammar structure. Generating captions automatically will be helpful for visually impaired people to understand the picture better. To achieve this task a hybrid model is defined in this paper which uses CNN (Convolutional Neural Network) and LSTM (Long Short-Term Memory). The model will be trained using Flickr8K data sets with containing 8000 images and 5 captions for each image.
使用Python的图像字幕
在过去的几年里,识别物体和图像上下文的问题引起了越来越多的关注。图像字幕是识别图像的上下文,然后用适当的语法结构为其生成标题的任务。自动生成字幕将有助于视障人士更好地理解图片。为了实现这一任务,本文定义了一个使用CNN(卷积神经网络)和LSTM(长短期记忆)的混合模型。该模型将使用包含8000张图像和每张图像5个标题的Flickr8K数据集进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信