Multi-task Solution for Aspect Category Sentiment Analysis on Vietnamese Datasets

Hoang-Quan Dang, Duc-Duy-Anh Nguyen, Trong-Hop Do
{"title":"Multi-task Solution for Aspect Category Sentiment Analysis on Vietnamese Datasets","authors":"Hoang-Quan Dang, Duc-Duy-Anh Nguyen, Trong-Hop Do","doi":"10.1109/CyberneticsCom55287.2022.9865479","DOIUrl":null,"url":null,"abstract":"In this article, we solved two tasks in the Vietnamese Aspect-based Sentiment Analysis problem: Aspect Category Detection (ACD) and Sentiment Polarity Classification (SPC). Besides, we proposed end-to-end models to handle the above tasks simultaneously for two domains (Restaurant and Hotel) in the VLSP 2018 Aspect-based Sentiment Analysis dataset using PhoBERT as Pre-trained language models for Vietnamese in two ways: Multi-task and Multi-task with Multi-branch approach. Both models give very good results when applied preprocessing. Specifically, the Multi-task model achieves state-of-the-art (SOTA) results in the Hotel domain of the VLSP 2018 ABSA dataset, with the F1-score being 82.55% for ACD and 77.32% for ACD with SPC. For the Restaurant domain, our Multi-task model also achieved SOTA in the ACD with SPC task by an F1-score of 71.55% and 83.29% for the ACD.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we solved two tasks in the Vietnamese Aspect-based Sentiment Analysis problem: Aspect Category Detection (ACD) and Sentiment Polarity Classification (SPC). Besides, we proposed end-to-end models to handle the above tasks simultaneously for two domains (Restaurant and Hotel) in the VLSP 2018 Aspect-based Sentiment Analysis dataset using PhoBERT as Pre-trained language models for Vietnamese in two ways: Multi-task and Multi-task with Multi-branch approach. Both models give very good results when applied preprocessing. Specifically, the Multi-task model achieves state-of-the-art (SOTA) results in the Hotel domain of the VLSP 2018 ABSA dataset, with the F1-score being 82.55% for ACD and 77.32% for ACD with SPC. For the Restaurant domain, our Multi-task model also achieved SOTA in the ACD with SPC task by an F1-score of 71.55% and 83.29% for the ACD.
面向越南语数据集的面向类情感分析多任务解决方案
在本文中,我们解决了越南语基于方面的情感分析问题中的两个任务:方面类别检测(ACD)和情感极性分类(SPC)。此外,我们提出了端到端模型来同时处理VLSP 2018基于方面的情感分析数据集中两个领域(餐厅和酒店)的上述任务,使用PhoBERT作为越南语的两种预训练语言模型:多任务和多分支的多任务方法。两种模型在进行预处理时都得到了很好的结果。具体来说,多任务模型在VLSP 2018 ABSA数据集的酒店领域实现了最先进(SOTA)的结果,其中ACD的f1得分为82.55%,ACD与SPC的得分为77.32%。对于餐厅领域,我们的多任务模型在具有SPC任务的ACD中也实现了SOTA,其中ACD的f1得分为71.55%,而ACD的f1得分为83.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信