Farsi Handwriting Digit Recognition Based on Convolutional Neural Networks

A. Dehghanian, V. Ghods
{"title":"Farsi Handwriting Digit Recognition Based on Convolutional Neural Networks","authors":"A. Dehghanian, V. Ghods","doi":"10.1109/ISCBI.2018.00022","DOIUrl":null,"url":null,"abstract":"In this paper, a convolutional neural network (CNN) is exploited for Farsi handwritten digit recognition. For training and evaluating the CNN, the \"HODA\" dataset was used which consists of 80000 images of Farsi handwritten digits. In the proposed method, we focused on the efficient and unique feature of Farsi digits that is using just the half upper part of the digits for recognition purpose. The proposed method, despite of a 50% reduction in the data size which fed to the CNN, yielded an acceptable reduction in time consuming for training and evaluate CNN of about 50 % compared when using the full image of the digits (full data), and just a 1.5% increase in recognition error.","PeriodicalId":153800,"journal":{"name":"2018 6th International Symposium on Computational and Business Intelligence (ISCBI)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Symposium on Computational and Business Intelligence (ISCBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2018.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, a convolutional neural network (CNN) is exploited for Farsi handwritten digit recognition. For training and evaluating the CNN, the "HODA" dataset was used which consists of 80000 images of Farsi handwritten digits. In the proposed method, we focused on the efficient and unique feature of Farsi digits that is using just the half upper part of the digits for recognition purpose. The proposed method, despite of a 50% reduction in the data size which fed to the CNN, yielded an acceptable reduction in time consuming for training and evaluate CNN of about 50 % compared when using the full image of the digits (full data), and just a 1.5% increase in recognition error.
基于卷积神经网络的波斯语手写数字识别
本文将卷积神经网络(CNN)用于波斯语手写数字识别。为了训练和评估CNN,我们使用了由80000张波斯语手写数字图像组成的“HODA”数据集。在提出的方法中,我们专注于波斯语数字的高效和独特的特征,即仅使用数字的上半部分进行识别。所提出的方法,尽管提供给CNN的数据量减少了50%,但与使用数字的完整图像(完整数据)相比,训练和评估CNN的时间减少了约50%,识别误差仅增加1.5%,这是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信