Comparison of Maximal Upward Planar Subgraph Computation Algorithms

A. Rextin
{"title":"Comparison of Maximal Upward Planar Subgraph Computation Algorithms","authors":"A. Rextin","doi":"10.1109/FIT.2012.71","DOIUrl":null,"url":null,"abstract":"A digraph G = (V, E) is upward planar if it has a planar drawing with all edges pointing upward. A subgraph G̃ of a digraph G with an upward planar drawing is called a maximal upward planar subgraph of G if the addition of any edge in G\\G to G̃ causes non-upward planarity. Binucci et al. showed that finding even the maximum upward planar subgraph of an embedded digraph Gφ is NP-Complete [1]. In this paper, we compare different algorithms to find maximal upward planar subgraph of an embedded digraph. We also use a large test suite of embedded digraphs to gain a deeper understanding of upward planarity and see how the different heuristics perform in practice.","PeriodicalId":166149,"journal":{"name":"2012 10th International Conference on Frontiers of Information Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2012.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A digraph G = (V, E) is upward planar if it has a planar drawing with all edges pointing upward. A subgraph G̃ of a digraph G with an upward planar drawing is called a maximal upward planar subgraph of G if the addition of any edge in G\G to G̃ causes non-upward planarity. Binucci et al. showed that finding even the maximum upward planar subgraph of an embedded digraph Gφ is NP-Complete [1]. In this paper, we compare different algorithms to find maximal upward planar subgraph of an embedded digraph. We also use a large test suite of embedded digraphs to gain a deeper understanding of upward planarity and see how the different heuristics perform in practice.
最大向上平面子图计算算法的比较
如果有向图G = (V, E)具有所有边向上的平面,则该有向图G = (V, E)为向上平面。有向图G的上平面子图G,如果G\G中的任何一条边加到G的上平面上导致非上平面,则称为G的最大上平面子图G。Binucci等人证明,即使找到嵌入有向图Gφ的最大向上平面子图也是np完全的[1]。本文比较了求嵌入式有向图上最大平面子图的几种算法。我们还使用嵌入式有向图的大型测试套件来更深入地理解向上平面性,并查看不同的启发式在实践中的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信