Yixin Xu, L. Kulik, Renata Borovica-Gajic, Abdullah AlDwyish, Jianzhong Qi
{"title":"Highly Efficient and Scalable Multi-hop Ride-sharing","authors":"Yixin Xu, L. Kulik, Renata Borovica-Gajic, Abdullah AlDwyish, Jianzhong Qi","doi":"10.1145/3397536.3422235","DOIUrl":null,"url":null,"abstract":"On-demand ride-sharing services such as Uber and Lyft have gained tremendous popularity over the past decade, largely driven by the omnipresence of mobile devices. Ride-sharing services can provide economic and environmental benefits such as reducing traffic congestion and vehicle emissions. Multi-hop ride-sharing enables passengers to transfer between vehicles within a single trip, which significantly extends the benefits of ride-sharing and provides ride opportunities that are not possible otherwise. Despite its advantages, offering real-time multi-hop ride-sharing services at large scale is a challenging computational task due to the large combination of vehicles and passenger transfer points. To address these challenges, we propose exact and approximation algorithms that are scalable and achieve real-time responses for highly dynamic ride-sharing scenarios in large metropolitan areas. Our experiments on real-world datasets show the benefits of multi-hop ride-sharing services and demonstrate that our proposed algorithms are more than two orders of magnitude faster than the state-of-the-art. Our approximation algorithms offer a comparable trip quality to our exact algorithm, while improving the ride-sharing request matching time by another order of magnitude.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
On-demand ride-sharing services such as Uber and Lyft have gained tremendous popularity over the past decade, largely driven by the omnipresence of mobile devices. Ride-sharing services can provide economic and environmental benefits such as reducing traffic congestion and vehicle emissions. Multi-hop ride-sharing enables passengers to transfer between vehicles within a single trip, which significantly extends the benefits of ride-sharing and provides ride opportunities that are not possible otherwise. Despite its advantages, offering real-time multi-hop ride-sharing services at large scale is a challenging computational task due to the large combination of vehicles and passenger transfer points. To address these challenges, we propose exact and approximation algorithms that are scalable and achieve real-time responses for highly dynamic ride-sharing scenarios in large metropolitan areas. Our experiments on real-world datasets show the benefits of multi-hop ride-sharing services and demonstrate that our proposed algorithms are more than two orders of magnitude faster than the state-of-the-art. Our approximation algorithms offer a comparable trip quality to our exact algorithm, while improving the ride-sharing request matching time by another order of magnitude.