Access Characteristic Guided Partition for Read Performance Improvement on Solid State Drives

Yina Lv, Liang Shi, Qiao Li, C. Xue, E. Sha
{"title":"Access Characteristic Guided Partition for Read Performance Improvement on Solid State Drives","authors":"Yina Lv, Liang Shi, Qiao Li, C. Xue, E. Sha","doi":"10.1109/DAC18072.2020.9218540","DOIUrl":null,"url":null,"abstract":"Solid state drives (SSDs) are now widely deployed due to the development of high-density and low-cost NAND flash memories. Previous works have identified that the read performance of SSDs is degrading along with the development. One of the most critical reasons is the access interference between reads and writes, as the latest NAND flash memories have significant latency gap between reads and writes. This paper addresses this issue with the assistance of access characteristic guided SSD partitioning. First, several server workloads are studied and it is shown that reads and writes can be separated based on their access characteristics. Second, a set of techniques is proposed to place data judiciously for requests separation. Finally, a workload based SSD partitioning scheme is proposed to improve the read performance. The experimental results show that the proposed solution can improve read performance by 36% on average compared with the state-of-the-art solutions.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"289 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Solid state drives (SSDs) are now widely deployed due to the development of high-density and low-cost NAND flash memories. Previous works have identified that the read performance of SSDs is degrading along with the development. One of the most critical reasons is the access interference between reads and writes, as the latest NAND flash memories have significant latency gap between reads and writes. This paper addresses this issue with the assistance of access characteristic guided SSD partitioning. First, several server workloads are studied and it is shown that reads and writes can be separated based on their access characteristics. Second, a set of techniques is proposed to place data judiciously for requests separation. Finally, a workload based SSD partitioning scheme is proposed to improve the read performance. The experimental results show that the proposed solution can improve read performance by 36% on average compared with the state-of-the-art solutions.
提高固态硬盘读性能的访问特性引导分区
由于高密度和低成本NAND闪存的发展,固态硬盘(ssd)现在被广泛部署。以往的研究表明,随着技术的发展,ssd的读性能逐渐下降。其中一个最关键的原因是读写之间的访问干扰,因为最新的NAND闪存具有明显的读写延迟差距。本文借助访问特性引导的SSD分区解决了这个问题。首先,研究了几种服务器工作负载,并表明可以根据其访问特征将读取和写入分开。其次,提出了一组技术来明智地放置数据以实现请求分离。最后,提出了一种基于工作负载的SSD分区方案,以提高SSD的读性能。实验结果表明,与现有方案相比,该方案可将读取性能平均提高36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信