Learning conditional abstractions

Bryan A. Brady, R. Bryant, S. Seshia
{"title":"Learning conditional abstractions","authors":"Bryan A. Brady, R. Bryant, S. Seshia","doi":"10.5555/2157654.2157674","DOIUrl":null,"url":null,"abstract":"Abstraction is central to formal verification. In term-level abstraction, the design is abstracted using a fragment of first-order logic with background theories, such as the theory of uninterpreted functions with equality. The main challenge in using term-level abstraction is determining what components to abstract and under what conditions. In this paper, we present an automatic technique to conditionally abstract register transfer level (RTL) hardware designs to the term level. Our approach is a layered approach that combines random simulation and machine learning inside a counter-example guided abstraction refinement (CEGAR) loop. First, random simulation is used to determine modules that are candidates for abstraction. Next, machine learning is used on the resulting simulation traces to generate candidate conditions under which those modules can be abstracted. Finally, a verifier is invoked. If spurious counterexamples arise, we refine the abstraction by performing a further iteration of random simulation and machine learning. We present an experimental evaluation on processor designs.","PeriodicalId":219905,"journal":{"name":"2011 Formal Methods in Computer-Aided Design (FMCAD)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Formal Methods in Computer-Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2157654.2157674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Abstraction is central to formal verification. In term-level abstraction, the design is abstracted using a fragment of first-order logic with background theories, such as the theory of uninterpreted functions with equality. The main challenge in using term-level abstraction is determining what components to abstract and under what conditions. In this paper, we present an automatic technique to conditionally abstract register transfer level (RTL) hardware designs to the term level. Our approach is a layered approach that combines random simulation and machine learning inside a counter-example guided abstraction refinement (CEGAR) loop. First, random simulation is used to determine modules that are candidates for abstraction. Next, machine learning is used on the resulting simulation traces to generate candidate conditions under which those modules can be abstracted. Finally, a verifier is invoked. If spurious counterexamples arise, we refine the abstraction by performing a further iteration of random simulation and machine learning. We present an experimental evaluation on processor designs.
学习条件抽象
抽象是形式化验证的核心。在术语级抽象中,使用具有背景理论的一阶逻辑片段对设计进行抽象,例如具有相等性的未解释函数理论。使用术语级抽象的主要挑战是确定在什么条件下抽象哪些组件。本文提出了一种有条件地将寄存器传输层(RTL)硬件设计抽象到术语层的自动技术。我们的方法是一种分层方法,将随机模拟和机器学习结合在一个反例引导的抽象细化(CEGAR)循环中。首先,使用随机模拟来确定要抽象的候选模块。接下来,将机器学习用于结果模拟跟踪,以生成候选条件,在这些条件下可以对这些模块进行抽象。最后,调用一个验证器。如果出现虚假的反例,我们通过执行随机模拟和机器学习的进一步迭代来改进抽象。我们提出了对处理器设计的实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信