TrojDRL: Evaluation of Backdoor Attacks on Deep Reinforcement Learning

Panagiota Kiourti, Kacper Wardega, Susmit Jha, Wenchao Li
{"title":"TrojDRL: Evaluation of Backdoor Attacks on Deep Reinforcement Learning","authors":"Panagiota Kiourti, Kacper Wardega, Susmit Jha, Wenchao Li","doi":"10.1109/DAC18072.2020.9218663","DOIUrl":null,"url":null,"abstract":"We present TrojDRL, a tool for exploring and evaluating backdoor attacks on deep reinforcement learning agents. TrojDRL exploits the sequential nature of deep reinforcement learning (DRL) and considers different gradations of threat models. We show that untargeted attacks on state-of-the-art actor-critic algorithms can circumvent existing defenses built on the assumption of backdoors being targeted. We evaluated TrojDRL on a broad set of DRL benchmarks and showed that the attacks require only poisoning as little as 0.025% of the training data. Compared with existing works of backdoor attacks on classification models, TrojDRL provides a first step towards understanding the vulnerability of DRL agents.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

We present TrojDRL, a tool for exploring and evaluating backdoor attacks on deep reinforcement learning agents. TrojDRL exploits the sequential nature of deep reinforcement learning (DRL) and considers different gradations of threat models. We show that untargeted attacks on state-of-the-art actor-critic algorithms can circumvent existing defenses built on the assumption of backdoors being targeted. We evaluated TrojDRL on a broad set of DRL benchmarks and showed that the attacks require only poisoning as little as 0.025% of the training data. Compared with existing works of backdoor attacks on classification models, TrojDRL provides a first step towards understanding the vulnerability of DRL agents.
TrojDRL:评估对深度强化学习的后门攻击
我们提出TrojDRL,一个用于探索和评估对深度强化学习代理的后门攻击的工具。TrojDRL利用了深度强化学习(DRL)的顺序特性,并考虑了不同层次的威胁模型。我们表明,对最先进的行动者批评算法的非针对性攻击可以绕过基于后门被攻击的假设而建立的现有防御。我们在一组广泛的DRL基准测试中评估了TrojDRL,结果表明攻击只需要毒害0.025%的训练数据。与现有针对分类模型的后门攻击工作相比,TrojDRL为理解DRL代理的漏洞提供了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信