Open Problems

Kefeng Liu
{"title":"Open Problems","authors":"Kefeng Liu","doi":"10.4310/iccm.2019.v7.n2.a10","DOIUrl":null,"url":null,"abstract":"Recently Neves and Marques [1] proved there are infinite number of minimal surfaces in a compact Riemannian manifold with positive Ricci curvature and dimension at most seven. It will be interesting to know the Euler number of such surfaces. Are they bounded by the index linearly? In [2, 3], Grigor’yan, Netrusov and I proved this if the three manifold has positive Ricci curvature. One can ask similar question for codimension one minimal hypersurface in higher dimensions. Can one bound the sum of Betti number in terms of the index in a linear manner?","PeriodicalId":415664,"journal":{"name":"Notices of the International Congress of Chinese Mathematicians","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notices of the International Congress of Chinese Mathematicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/iccm.2019.v7.n2.a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently Neves and Marques [1] proved there are infinite number of minimal surfaces in a compact Riemannian manifold with positive Ricci curvature and dimension at most seven. It will be interesting to know the Euler number of such surfaces. Are they bounded by the index linearly? In [2, 3], Grigor’yan, Netrusov and I proved this if the three manifold has positive Ricci curvature. One can ask similar question for codimension one minimal hypersurface in higher dimensions. Can one bound the sum of Betti number in terms of the index in a linear manner?
开放的问题
最近Neves和Marques[1]证明了具有正Ricci曲率且维数不超过7的紧化黎曼流形中存在无限个极小曲面。知道这些曲面的欧拉数是很有趣的。它们是被指标线性限定的吗?在[2,3]中,Grigor 'yan, Netrusov和我证明了如果三流形具有正的Ricci曲率。对于余维数为1的高维极小超曲面,也可以提出类似的问题。能否用指标对贝蒂数的和进行线性定界?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信