The spiked random neural network: nonlinearity, learning and approximation

E. Gelenbe
{"title":"The spiked random neural network: nonlinearity, learning and approximation","authors":"E. Gelenbe","doi":"10.1109/CNNA.1998.685674","DOIUrl":null,"url":null,"abstract":"We summarize the theoretical foundations of the random neural network model (RNN) and of its learning algorithm, and present a relevant bibliography of its theory and applications. Many applications have resulted from this model, including its use in still image and video compression which has achieved compression ratios of up to 500:1 for moving gray-scale images, with 30db PSNR quality levels. Another application of the RNN is to image segmentation; the recurrent feature of the network has been used to extract precise morphometric information from magnetic resonance imaging (MRI) scans of the human brain. The RNN has also been successfully applied to optimization and image texture analysis and reconstruction.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We summarize the theoretical foundations of the random neural network model (RNN) and of its learning algorithm, and present a relevant bibliography of its theory and applications. Many applications have resulted from this model, including its use in still image and video compression which has achieved compression ratios of up to 500:1 for moving gray-scale images, with 30db PSNR quality levels. Another application of the RNN is to image segmentation; the recurrent feature of the network has been used to extract precise morphometric information from magnetic resonance imaging (MRI) scans of the human brain. The RNN has also been successfully applied to optimization and image texture analysis and reconstruction.
尖刺随机神经网络:非线性、学习和近似
本文综述了随机神经网络模型(RNN)及其学习算法的理论基础,并对其理论和应用进行了综述。许多应用都是由这个模型产生的,包括它在静止图像和视频压缩中的使用,对于移动的灰度图像,它已经实现了高达500:1的压缩比,具有30db的PSNR质量水平。RNN的另一个应用是图像分割;该网络的循环特征已被用于从人脑的磁共振成像(MRI)扫描中提取精确的形态测量信息。RNN还成功地应用于优化和图像纹理分析与重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信