Unsupervised Broadcast News Summarization; a Comparative Study on Maximal Marginal Relevance (MMR) and Latent Semantic Analysis (LSA)

Majid Ramezani, Mohammad-Salar Shahryari, Amir-Reza Feizi-Derakhshi, M. Feizi-Derakhshi
{"title":"Unsupervised Broadcast News Summarization; a Comparative Study on Maximal Marginal Relevance (MMR) and Latent Semantic Analysis (LSA)","authors":"Majid Ramezani, Mohammad-Salar Shahryari, Amir-Reza Feizi-Derakhshi, M. Feizi-Derakhshi","doi":"10.1109/CSICC58665.2023.10105403","DOIUrl":null,"url":null,"abstract":"The automatic speech summarization methods traditionally are classified into two groups: supervised and unsupervised methods. Supervised methods rely on a set of features, while unsupervised methods perform summarization through a set of rules. Among unsupervised automatic speech summarization methods, Latent Semantic Analysis (LSA) and Maximal Marginal Relevance (MMR) are so famous. This study set out to peruse the overall efficacy of two aforementioned unsupervised methods in summarization of Persian broadcast news transcriptions. The results justify the superiority of LSA to MMR during generic summarization. This is while MMR achieves better results in query-based summarization.","PeriodicalId":127277,"journal":{"name":"2023 28th International Computer Conference, Computer Society of Iran (CSICC)","volume":"29 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 28th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC58665.2023.10105403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The automatic speech summarization methods traditionally are classified into two groups: supervised and unsupervised methods. Supervised methods rely on a set of features, while unsupervised methods perform summarization through a set of rules. Among unsupervised automatic speech summarization methods, Latent Semantic Analysis (LSA) and Maximal Marginal Relevance (MMR) are so famous. This study set out to peruse the overall efficacy of two aforementioned unsupervised methods in summarization of Persian broadcast news transcriptions. The results justify the superiority of LSA to MMR during generic summarization. This is while MMR achieves better results in query-based summarization.
无监督广播新闻摘要;最大边际关联(MMR)和潜在语义分析(LSA)的比较研究
传统的自动语音摘要方法分为两类:监督式和非监督式。监督方法依赖于一组特征,而非监督方法通过一组规则执行摘要。在无监督自动语音摘要方法中,潜在语义分析(LSA)和最大边际关联(MMR)是最著名的方法。本研究着手研究上述两种无监督方法在总结波斯语广播新闻转录中的总体功效。结果证明了LSA比MMR在通用总结中的优越性。这就是MMR在基于查询的摘要中取得更好结果的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信