Word Representation Models for Arabic Dialect Identification

M. Sobhy, Ahmed H. Abu El-Atta, A. El-sawy, Hamada Nayel
{"title":"Word Representation Models for Arabic Dialect Identification","authors":"M. Sobhy, Ahmed H. Abu El-Atta, A. El-sawy, Hamada Nayel","doi":"10.18653/v1/2022.wanlp-1.52","DOIUrl":null,"url":null,"abstract":"This paper describes the systems submitted by BFCAI team to Nuanced Arabic Dialect Identification (NADI) shared task 2022. Dialect identification task aims at detecting the source variant of a given text or speech segment automatically. There are two subtasks in NADI 2022, the first subtask for country-level identification and the second subtask for sentiment analysis. Our team participated in the first subtask. The proposed systems use Term Frequency Inverse/Document Frequency and word embeddings as vectorization models. Different machine learning algorithms have been used as classifiers. The proposed systems have been tested on two test sets: Test-A and Test-B. The proposed models achieved Macro-f1 score of 21.25% and 9.71% for Test-A and Test-B set respectively. On other hand, the best-performed submitted system achieved Macro-f1 score of 36.48% and 18.95% for Test-A and Test-B set respectively.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes the systems submitted by BFCAI team to Nuanced Arabic Dialect Identification (NADI) shared task 2022. Dialect identification task aims at detecting the source variant of a given text or speech segment automatically. There are two subtasks in NADI 2022, the first subtask for country-level identification and the second subtask for sentiment analysis. Our team participated in the first subtask. The proposed systems use Term Frequency Inverse/Document Frequency and word embeddings as vectorization models. Different machine learning algorithms have been used as classifiers. The proposed systems have been tested on two test sets: Test-A and Test-B. The proposed models achieved Macro-f1 score of 21.25% and 9.71% for Test-A and Test-B set respectively. On other hand, the best-performed submitted system achieved Macro-f1 score of 36.48% and 18.95% for Test-A and Test-B set respectively.
阿拉伯语方言识别的词表示模型
本文介绍了BFCAI团队提交给细致入微阿拉伯语方言识别(NADI)共享任务2022的系统。方言识别任务的目的是自动检测给定文本或语音片段的源变体。在NADI 2022中有两个子任务,第一个子任务用于国家层面的识别,第二个子任务用于情感分析。我们小组参加了第一个子任务。提出的系统使用词频率逆/文档频率和词嵌入作为矢量化模型。不同的机器学习算法被用作分类器。所提出的系统已经在两个测试集上进行了测试:test - a和test - b。所提出的模型在Test-A和Test-B集上的Macro-f1得分分别为21.25%和9.71%。另一方面,表现最好的提交系统在Test-A和Test-B集的Macro-f1得分分别为36.48%和18.95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信