An Adaptive Sub-sampling Method for In-memory Compression of Scientific Data

D. Unat, T. Hromadka, S. Baden
{"title":"An Adaptive Sub-sampling Method for In-memory Compression of Scientific Data","authors":"D. Unat, T. Hromadka, S. Baden","doi":"10.1109/DCC.2009.65","DOIUrl":null,"url":null,"abstract":"A  current challenge in scientific computing is how to curb the growth of simulation datasets without  losing valuable information. While  wavelet based methods are popular, they require that data be decompressed before it can analyzed,for example, when identifying time-dependent structures in turbulent flows. We present Adaptive Coarsening, an adaptive subsampling compression strategy that enables the compressed data product to be directly manipulated in memory without requiring costly decompression.We demonstrate compression factors of up to 8 in turbulent flow simulations in three dimensions.Our compression strategy produces a non-progressive multiresolution representation, subdividing the dataset into fixed sized regions and compressing each region independently.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

A  current challenge in scientific computing is how to curb the growth of simulation datasets without  losing valuable information. While  wavelet based methods are popular, they require that data be decompressed before it can analyzed,for example, when identifying time-dependent structures in turbulent flows. We present Adaptive Coarsening, an adaptive subsampling compression strategy that enables the compressed data product to be directly manipulated in memory without requiring costly decompression.We demonstrate compression factors of up to 8 in turbulent flow simulations in three dimensions.Our compression strategy produces a non-progressive multiresolution representation, subdividing the dataset into fixed sized regions and compressing each region independently.
一种科学数据内存压缩的自适应子采样方法
当前科学计算面临的一个挑战是如何在不丢失有价值信息的情况下抑制模拟数据集的增长。虽然基于小波的方法很流行,但它们要求在分析数据之前对数据进行解压,例如,在湍流中识别与时间相关的结构时。我们提出了自适应粗化,一种自适应子采样压缩策略,使压缩的数据产品可以直接在内存中操作,而不需要昂贵的解压缩。在三维湍流模拟中,我们证明了压缩因子高达8。我们的压缩策略产生非渐进式多分辨率表示,将数据集细分为固定大小的区域,并独立压缩每个区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信