An Industrial Study of Natural Language Processing Based Test Case Prioritization

Yilin Yang, Xinhai Huang, Xuefei Hao, Zicong Liu, Zhenyu Chen
{"title":"An Industrial Study of Natural Language Processing Based Test Case Prioritization","authors":"Yilin Yang, Xinhai Huang, Xuefei Hao, Zicong Liu, Zhenyu Chen","doi":"10.1109/ICST.2017.66","DOIUrl":null,"url":null,"abstract":"In mobile application development, the frequentsoftware release limits the testing time resource. In order todetect bugs in early phases, researchers proposed various testcase prioritization (TCP) techniques in past decades. In practice, considering that some test case is described or contains text, theresearchers also employed Natural Language Processing (NLP)to assist the TCP techniques. This paper conducted an extensiveempirical study to analyze the performance of three NLP basedTCP technologies, which is based on 15059 test cases from 30industrial projects. The result shows that all of these threestrategies can help to improve the efficiency of software testing, and the Risk strategy achieved the best performance across thesubject programs.","PeriodicalId":112258,"journal":{"name":"2017 IEEE International Conference on Software Testing, Verification and Validation (ICST)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Software Testing, Verification and Validation (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST.2017.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In mobile application development, the frequentsoftware release limits the testing time resource. In order todetect bugs in early phases, researchers proposed various testcase prioritization (TCP) techniques in past decades. In practice, considering that some test case is described or contains text, theresearchers also employed Natural Language Processing (NLP)to assist the TCP techniques. This paper conducted an extensiveempirical study to analyze the performance of three NLP basedTCP technologies, which is based on 15059 test cases from 30industrial projects. The result shows that all of these threestrategies can help to improve the efficiency of software testing, and the Risk strategy achieved the best performance across thesubject programs.
基于自然语言处理的测试用例优先级的工业研究
在移动应用开发中,频繁的软件发布限制了测试时间资源。为了在早期阶段检测错误,研究人员在过去的几十年里提出了各种测试用例优先级(TCP)技术。在实践中,考虑到某些测试用例被描述或包含文本,研究人员还使用自然语言处理(NLP)来辅助TCP技术。本文基于30个工业项目的15059个测试用例,对三种基于NLP的tcp技术的性能进行了广泛的实证研究。结果表明,这三种策略都可以帮助提高软件测试的效率,并且风险策略在整个主题程序中取得了最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信