Detection of point targets amid cluttered background in IR imagery for IRST and MAWS applications

N. Kumar, Sandeep Kumar, Z. A. Ansari, Neeta Kandpal, Unnikrishnan G, Ajay Kumar
{"title":"Detection of point targets amid cluttered background in IR imagery for IRST and MAWS applications","authors":"N. Kumar, Sandeep Kumar, Z. A. Ansari, Neeta Kandpal, Unnikrishnan G, Ajay Kumar","doi":"10.1109/ICORT52730.2021.9582047","DOIUrl":null,"url":null,"abstract":"Due to its relevance in a variety of aerial surveillance and countermeasure systems, detecting point targets against a cluttered backdrop in infrared images has always remained an important topic of research. We evaluate the performance of six point target detection algorithms- Top hat morphology, Modified Top Hat Morphology, Contour Morphology, Method of Directional derivative, Max-Mean and Max-Median- for a synthetic IR video dataset comprising of point targets following predefined trajectories amid cluttered background. True positive rate (Probability of detection) and false alarm rate averaged over all the video frames have been considered as performance measure. It is found that for all the algorithms considered there is a trade off between the True Positive and False Alarm Rate.","PeriodicalId":344816,"journal":{"name":"2021 2nd International Conference on Range Technology (ICORT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Range Technology (ICORT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORT52730.2021.9582047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to its relevance in a variety of aerial surveillance and countermeasure systems, detecting point targets against a cluttered backdrop in infrared images has always remained an important topic of research. We evaluate the performance of six point target detection algorithms- Top hat morphology, Modified Top Hat Morphology, Contour Morphology, Method of Directional derivative, Max-Mean and Max-Median- for a synthetic IR video dataset comprising of point targets following predefined trajectories amid cluttered background. True positive rate (Probability of detection) and false alarm rate averaged over all the video frames have been considered as performance measure. It is found that for all the algorithms considered there is a trade off between the True Positive and False Alarm Rate.
红外图像中杂乱背景下的点目标检测
由于其在各种空中监视和对抗系统中的相关性,在红外图像中对杂乱背景下的点目标进行检测一直是一个重要的研究课题。我们评估了六种点目标检测算法的性能——礼帽形态学、改进的礼帽形态学、轮廓形态学、方向导数方法、Max-Mean和Max-Median——用于合成红外视频数据集,该数据集由在混乱背景中遵循预定义轨迹的点目标组成。考虑了所有视频帧的真阳性率(检测概率)和虚警率的平均值作为性能指标。研究发现,对于所有考虑的算法,在真正率和虚警率之间存在权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信