Negative Probabilities in Financial Modeling

G. Meissner, Dr. Mark Burgin
{"title":"Negative Probabilities in Financial Modeling","authors":"G. Meissner, Dr. Mark Burgin","doi":"10.2139/ssrn.1773077","DOIUrl":null,"url":null,"abstract":"We first define and derive general properties of negative probabilities. We then show how negative probabilities can be applied to modeling financial options such as Caps and Floors. In trading practice, these options are typically valued in a Black-Scholes-Merton framework assuming a lognormal distribution for the underlying interest rate. However, in some cases, such as the 2008/2009 financial crisis, interest rates can get negative. Then the lognormal distribution is inapplicable. We show how negative probabilities associated with negative interest rates can be applied to value interest rate options. A model in VBA, which prices Caps and Floors with negative probabilities, is available upon request. A follow up paper will address bigger than unity probabilities in financial modeling.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1773077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We first define and derive general properties of negative probabilities. We then show how negative probabilities can be applied to modeling financial options such as Caps and Floors. In trading practice, these options are typically valued in a Black-Scholes-Merton framework assuming a lognormal distribution for the underlying interest rate. However, in some cases, such as the 2008/2009 financial crisis, interest rates can get negative. Then the lognormal distribution is inapplicable. We show how negative probabilities associated with negative interest rates can be applied to value interest rate options. A model in VBA, which prices Caps and Floors with negative probabilities, is available upon request. A follow up paper will address bigger than unity probabilities in financial modeling.
金融建模中的负概率
我们首先定义并推导出负概率的一般性质。然后,我们将展示如何将负概率应用于诸如上限和下限等金融选项的建模。在交易实践中,这些期权通常在假设基础利率为对数正态分布的Black-Scholes-Merton框架中进行估值。然而,在某些情况下,比如2008/2009年的金融危机,利率可能会变为负值。那么对数正态分布就不适用了。我们展示了与负利率相关的负概率如何应用于价值利率期权。VBA中的一个模型,可以根据要求为负概率的上限和下限定价。后续论文将讨论金融建模中大于单位的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信