Improved common correlation matrix based SMI algorithm by channel estimation error minimization with LMS approach

Takashi Akao, Satoshi Taroda, K. Maruta, C. Ahn
{"title":"Improved common correlation matrix based SMI algorithm by channel estimation error minimization with LMS approach","authors":"Takashi Akao, Satoshi Taroda, K. Maruta, C. Ahn","doi":"10.1109/WPMC.2017.8301888","DOIUrl":null,"url":null,"abstract":"This paper improves interference suppression performance of Common Correlation Matrix (CCM) based Sample Matrix Inversion (SMI) adaptive array antenna algorithm. Assuming multicarrier systems such as orthogonal frequency division multiplexing (OFDM), CCM is effective means to achieve good convergence of covariance matrix by utilizing time-domain signal samples before multicarrier conversion. However, the number of pilot symbols is still limited and receiver noise causes poor channel identification. Such inaccurate CSI estimation deteriorates the interference suppression performance of the CCM-SMI algorithm. The key proposal is introducing a minimization of channel estimation error using least mean square (LMS) approach. Computer simulation results verify the improved Bit Error Rate (BER) performance provided by a modified CCM-SMI algorithm.","PeriodicalId":239243,"journal":{"name":"2017 20th International Symposium on Wireless Personal Multimedia Communications (WPMC)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Symposium on Wireless Personal Multimedia Communications (WPMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPMC.2017.8301888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper improves interference suppression performance of Common Correlation Matrix (CCM) based Sample Matrix Inversion (SMI) adaptive array antenna algorithm. Assuming multicarrier systems such as orthogonal frequency division multiplexing (OFDM), CCM is effective means to achieve good convergence of covariance matrix by utilizing time-domain signal samples before multicarrier conversion. However, the number of pilot symbols is still limited and receiver noise causes poor channel identification. Such inaccurate CSI estimation deteriorates the interference suppression performance of the CCM-SMI algorithm. The key proposal is introducing a minimization of channel estimation error using least mean square (LMS) approach. Computer simulation results verify the improved Bit Error Rate (BER) performance provided by a modified CCM-SMI algorithm.
基于LMS方法的信道估计误差最小化改进了基于公共相关矩阵的SMI算法
本文改进了基于共相关矩阵(CCM)的样本矩阵反演(SMI)自适应阵列天线算法的干扰抑制性能。在正交频分复用(OFDM)等多载波系统中,CCM是在多载波转换前利用时域信号样本实现协方差矩阵良好收敛的有效手段。然而,导频符号的数量仍然有限,并且接收机噪声导致信道识别能力差。这种不准确的CSI估计会降低CCM-SMI算法的干扰抑制性能。关键的建议是引入最小均方(LMS)方法最小化信道估计误差。计算机仿真结果验证了改进的CCM-SMI算法提高了误码率(BER)性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信