{"title":"C-ISTA: Iterative Shrinkage-Thresholding Algorithm for Sparse Covariance Matrix Estimation","authors":"Wenfu Xia, Ziping Zhao, Ying Sun","doi":"10.1109/SSP53291.2023.10207953","DOIUrl":null,"url":null,"abstract":"Covariance matrix estimation is a fundamental task in many fields related to data analysis. As the dimension of the covariance matrix becomes large, it is desirable to obtain a sparse estimator and an efficient algorithm to compute it. In this paper, we consider the covariance matrix estimation problem by minimizing a Gaussian negative log-likelihood loss function with an ℓ1 penalty, which is a constrained non-convex optimization problem. We propose to solve the covariance estimator via a simple iterative shrinkage-thresholding algorithm (C-ISTA) with provable convergence. Numerical simulations with comparison to the benchmark methods demonstrate the computational efficiency and good estimation performance of C-ISTA.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Covariance matrix estimation is a fundamental task in many fields related to data analysis. As the dimension of the covariance matrix becomes large, it is desirable to obtain a sparse estimator and an efficient algorithm to compute it. In this paper, we consider the covariance matrix estimation problem by minimizing a Gaussian negative log-likelihood loss function with an ℓ1 penalty, which is a constrained non-convex optimization problem. We propose to solve the covariance estimator via a simple iterative shrinkage-thresholding algorithm (C-ISTA) with provable convergence. Numerical simulations with comparison to the benchmark methods demonstrate the computational efficiency and good estimation performance of C-ISTA.