C-ISTA: Iterative Shrinkage-Thresholding Algorithm for Sparse Covariance Matrix Estimation

Wenfu Xia, Ziping Zhao, Ying Sun
{"title":"C-ISTA: Iterative Shrinkage-Thresholding Algorithm for Sparse Covariance Matrix Estimation","authors":"Wenfu Xia, Ziping Zhao, Ying Sun","doi":"10.1109/SSP53291.2023.10207953","DOIUrl":null,"url":null,"abstract":"Covariance matrix estimation is a fundamental task in many fields related to data analysis. As the dimension of the covariance matrix becomes large, it is desirable to obtain a sparse estimator and an efficient algorithm to compute it. In this paper, we consider the covariance matrix estimation problem by minimizing a Gaussian negative log-likelihood loss function with an ℓ1 penalty, which is a constrained non-convex optimization problem. We propose to solve the covariance estimator via a simple iterative shrinkage-thresholding algorithm (C-ISTA) with provable convergence. Numerical simulations with comparison to the benchmark methods demonstrate the computational efficiency and good estimation performance of C-ISTA.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Covariance matrix estimation is a fundamental task in many fields related to data analysis. As the dimension of the covariance matrix becomes large, it is desirable to obtain a sparse estimator and an efficient algorithm to compute it. In this paper, we consider the covariance matrix estimation problem by minimizing a Gaussian negative log-likelihood loss function with an ℓ1 penalty, which is a constrained non-convex optimization problem. We propose to solve the covariance estimator via a simple iterative shrinkage-thresholding algorithm (C-ISTA) with provable convergence. Numerical simulations with comparison to the benchmark methods demonstrate the computational efficiency and good estimation performance of C-ISTA.
稀疏协方差矩阵估计的迭代缩水阈值算法
协方差矩阵估计是与数据分析相关的许多领域的一项基本任务。随着协方差矩阵维数的增大,需要得到一个稀疏估计量和一种高效的计算算法。本文研究了一个带有1惩罚的高斯负对数似然损失函数的最小化协方差矩阵估计问题,这是一个有约束的非凸优化问题。我们提出了一种简单的迭代收缩阈值算法(C-ISTA)来求解协方差估计,该算法具有可证明的收敛性。通过与基准方法的比较,验证了C-ISTA算法的计算效率和良好的估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信