Composite System Adequacy Assessment Using Monte Carlo Simulation and Logistic Regression Classifier

Sangit Poudel, Nava Raj Karki
{"title":"Composite System Adequacy Assessment Using Monte Carlo Simulation and Logistic Regression Classifier","authors":"Sangit Poudel, Nava Raj Karki","doi":"10.1109/ODICON50556.2021.9429000","DOIUrl":null,"url":null,"abstract":"This paper presents a new method that combines Logistic Regression Classifier (LRC) and Monte Carlo Simulation (MCS) to evaluate the adequacy of a composite power system. LRC is used to pre-classify the system states as failure or success based on training data set provided by conventional MCS itself, but with a relaxed error tolerance level. The proposed method is applied to the IEEE Reliability test system (IEEE-RTS-79) to calculate the annualized and annual indices.The results thus obtained are compared with that of conventional MCS. In different cases, the simulation results provide a significant improvement in computational burden and indices calculation time while maintaining resonable accuracy.","PeriodicalId":197132,"journal":{"name":"2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ODICON50556.2021.9429000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new method that combines Logistic Regression Classifier (LRC) and Monte Carlo Simulation (MCS) to evaluate the adequacy of a composite power system. LRC is used to pre-classify the system states as failure or success based on training data set provided by conventional MCS itself, but with a relaxed error tolerance level. The proposed method is applied to the IEEE Reliability test system (IEEE-RTS-79) to calculate the annualized and annual indices.The results thus obtained are compared with that of conventional MCS. In different cases, the simulation results provide a significant improvement in computational burden and indices calculation time while maintaining resonable accuracy.
基于蒙特卡罗模拟和逻辑回归分类器的复合系统充分性评估
提出了一种将逻辑回归分类器(LRC)与蒙特卡罗仿真(MCS)相结合的复合电力系统充分性评估方法。LRC基于传统MCS本身提供的训练数据集,对系统状态进行失败或成功的预分类,但具有宽松的容错级别。将该方法应用于IEEE可靠性测试系统(IEEE- rts -79),计算了年化指标和年化指标。所得结果与常规MCS进行了比较。在不同情况下,仿真结果在保持合理精度的同时,显著改善了计算量和指标计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信