Integration of multiple knowledge sources in a system for brain CT-scan interpretation based on the blackboard model

Hongyi Li, R. Deklerck, J. Cornelis
{"title":"Integration of multiple knowledge sources in a system for brain CT-scan interpretation based on the blackboard model","authors":"Hongyi Li, R. Deklerck, J. Cornelis","doi":"10.1109/CAIA.1994.323656","DOIUrl":null,"url":null,"abstract":"Medical image interpretation is a complex task that requires the integration of knowledge acquired from different domains, such as medicine, computer vision and image processing. This paper describes a knowledge based brain CT scan interpretation system that uses the blackboard model to integrate various sources of knowledge. The frame-based representation technique is employed to represent the geometric model of the human brain. The knowledge on low level image processing algorithms and high level interpretation is partitioned into knowledge sources (KSs) that operate on and communicate through the domain blackboard. Several numeric image processing algorithms are coded into KSs that segment the images or extract features from the image primitives. For the mapping of image primitives to brain objects, there are two groups of mapping KSs, namely model-directed and data-directed. The system achieves the successful labeling and delineation of about 25 brain objects.<<ETX>>","PeriodicalId":297396,"journal":{"name":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIA.1994.323656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Medical image interpretation is a complex task that requires the integration of knowledge acquired from different domains, such as medicine, computer vision and image processing. This paper describes a knowledge based brain CT scan interpretation system that uses the blackboard model to integrate various sources of knowledge. The frame-based representation technique is employed to represent the geometric model of the human brain. The knowledge on low level image processing algorithms and high level interpretation is partitioned into knowledge sources (KSs) that operate on and communicate through the domain blackboard. Several numeric image processing algorithms are coded into KSs that segment the images or extract features from the image primitives. For the mapping of image primitives to brain objects, there are two groups of mapping KSs, namely model-directed and data-directed. The system achieves the successful labeling and delineation of about 25 brain objects.<>
基于黑板模型的脑ct扫描判读系统中多个知识来源的集成
医学图像解释是一项复杂的任务,需要整合来自不同领域的知识,如医学、计算机视觉和图像处理。介绍了一种基于知识的脑CT扫描判读系统,该系统采用黑板模型集成多种知识来源。采用基于帧的表示技术来表示人脑的几何模型。将低级图像处理算法的知识和高级图像解释的知识划分为在领域黑板上运行并通过领域黑板进行通信的知识源。一些数字图像处理算法被编码到KSs中,用于分割图像或从图像原语中提取特征。对于图像原语到大脑对象的映射,有两组映射KSs,即模型导向和数据导向。该系统成功地对大约25个大脑物体进行了标记和描绘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信