Multi-scale Feature Spaces for Shape Processing and Analysis

G. Patané, B. Falcidieno
{"title":"Multi-scale Feature Spaces for Shape Processing and Analysis","authors":"G. Patané, B. Falcidieno","doi":"10.1109/SMI.2010.27","DOIUrl":null,"url":null,"abstract":"In digital geometry processing and shape modeling, the Laplace-Beltrami and the heat diffusion operator, together with the corresponding Laplacian eigenmaps, harmonic and geometry-aware functions, have been used in several applications, which range from surface parameterization, deformation, and compression to segmentation, clustering, and comparison. Using the linear FEM approximation of the Laplace-Beltrami operator, we derive a discrete heat kernel that is linear, stable to an irregular sampling density of the input surface, and scale covariant. With respect to previous work, this last property makes the kernel particularly suitable for shape analysis and comparison; in fact, local and global changes of the surface correspond to a re-scaling of the time parameter without affecting its spectral component. Finally, we study the scale spaces that are induced by the proposed heat kernel and exploited to provide a multi-scale approximation of scalar functions defined on 3D shapes.","PeriodicalId":404708,"journal":{"name":"2010 Shape Modeling International Conference","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Shape Modeling International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2010.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In digital geometry processing and shape modeling, the Laplace-Beltrami and the heat diffusion operator, together with the corresponding Laplacian eigenmaps, harmonic and geometry-aware functions, have been used in several applications, which range from surface parameterization, deformation, and compression to segmentation, clustering, and comparison. Using the linear FEM approximation of the Laplace-Beltrami operator, we derive a discrete heat kernel that is linear, stable to an irregular sampling density of the input surface, and scale covariant. With respect to previous work, this last property makes the kernel particularly suitable for shape analysis and comparison; in fact, local and global changes of the surface correspond to a re-scaling of the time parameter without affecting its spectral component. Finally, we study the scale spaces that are induced by the proposed heat kernel and exploited to provide a multi-scale approximation of scalar functions defined on 3D shapes.
形状处理与分析的多尺度特征空间
在数字几何处理和形状建模中,拉普拉斯-贝尔特拉米算子和热扩散算子,以及相应的拉普拉斯特征映射、谐波和几何感知函数,已被用于从表面参数化、变形和压缩到分割、聚类和比较等多个应用中。利用拉普拉斯-贝尔特拉米算子的线性有限元近似,我们得到了一个离散的热核,它是线性的,对输入表面的不规则采样密度稳定,并且是尺度协变的。相对于之前的工作,这最后一个性质使得核特别适合于形状分析和比较;事实上,地表的局部和全局变化对应于时间参数的重新标度,而不影响其谱成分。最后,我们研究了由所提出的热核引起的尺度空间,并利用它来提供定义在三维形状上的标量函数的多尺度近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信