C. Deac, G. Deac, R. Parpală, C. Popa, C. E. Cotet
{"title":"Vibration Anomaly Detection using Deep Neural Network and Convolutional Neural Network","authors":"C. Deac, G. Deac, R. Parpală, C. Popa, C. E. Cotet","doi":"10.7763/IJMO.2021.V11.772","DOIUrl":null,"url":null,"abstract":"Identifying the “health state” of the equipment is the domain of condition monitoring. The paper proposes a study of two models: DNN (Deep Neural Network) and CNN (Convolutional Neural Network) over an existent dataset provided by Case Western Reserve University for analyzing vibrations in fault diagnosis. After the model is trained on the windowed dataset using an optimal learning rate, minimizing the cost function, and is tested by computing the loss, accuracy and precision across the results, the weights are saved, and the models can be tested on other real data. The trained model recognizes raw time series data collected by micro electromechanical accelerometer sensors and detects anomalies based on former times series entries.","PeriodicalId":134487,"journal":{"name":"International Journal of Modeling and Optimization","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7763/IJMO.2021.V11.772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Identifying the “health state” of the equipment is the domain of condition monitoring. The paper proposes a study of two models: DNN (Deep Neural Network) and CNN (Convolutional Neural Network) over an existent dataset provided by Case Western Reserve University for analyzing vibrations in fault diagnosis. After the model is trained on the windowed dataset using an optimal learning rate, minimizing the cost function, and is tested by computing the loss, accuracy and precision across the results, the weights are saved, and the models can be tested on other real data. The trained model recognizes raw time series data collected by micro electromechanical accelerometer sensors and detects anomalies based on former times series entries.