Vibration Anomaly Detection using Deep Neural Network and Convolutional Neural Network

C. Deac, G. Deac, R. Parpală, C. Popa, C. E. Cotet
{"title":"Vibration Anomaly Detection using Deep Neural Network and Convolutional Neural Network","authors":"C. Deac, G. Deac, R. Parpală, C. Popa, C. E. Cotet","doi":"10.7763/IJMO.2021.V11.772","DOIUrl":null,"url":null,"abstract":"Identifying the “health state” of the equipment is the domain of condition monitoring. The paper proposes a study of two models: DNN (Deep Neural Network) and CNN (Convolutional Neural Network) over an existent dataset provided by Case Western Reserve University for analyzing vibrations in fault diagnosis. After the model is trained on the windowed dataset using an optimal learning rate, minimizing the cost function, and is tested by computing the loss, accuracy and precision across the results, the weights are saved, and the models can be tested on other real data. The trained model recognizes raw time series data collected by micro electromechanical accelerometer sensors and detects anomalies based on former times series entries.","PeriodicalId":134487,"journal":{"name":"International Journal of Modeling and Optimization","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7763/IJMO.2021.V11.772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Identifying the “health state” of the equipment is the domain of condition monitoring. The paper proposes a study of two models: DNN (Deep Neural Network) and CNN (Convolutional Neural Network) over an existent dataset provided by Case Western Reserve University for analyzing vibrations in fault diagnosis. After the model is trained on the windowed dataset using an optimal learning rate, minimizing the cost function, and is tested by computing the loss, accuracy and precision across the results, the weights are saved, and the models can be tested on other real data. The trained model recognizes raw time series data collected by micro electromechanical accelerometer sensors and detects anomalies based on former times series entries.
基于深度神经网络和卷积神经网络的振动异常检测
确定设备的“健康状态”属于状态监测领域。本文在凯斯西储大学提供的现有数据集上,提出了DNN (Deep Neural Network)和CNN (Convolutional Neural Network)两种模型,用于故障诊断中的振动分析。在窗口数据集上使用最优学习率、最小化代价函数对模型进行训练,并通过计算结果之间的损失、准确度和精度进行测试后,保存权重,模型可以在其他真实数据上进行测试。训练后的模型识别由微机电加速度计传感器收集的原始时间序列数据,并根据之前的时间序列条目检测异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信