Analyzing conversations using rich phrase patterns

Bin Zhang, Alex Marin, Brian Hutchinson, Mari Ostendorf
{"title":"Analyzing conversations using rich phrase patterns","authors":"Bin Zhang, Alex Marin, Brian Hutchinson, Mari Ostendorf","doi":"10.1109/ASRU.2011.6163972","DOIUrl":null,"url":null,"abstract":"Individual words are not powerful enough for many complex language classification problems. N-gram features include word context information, but are limited to contiguous word sequences. In this paper, we propose to use phrase patterns to extend n-grams for analyzing conversations, using a discriminative approach to learning patterns with a combination of words and word classes to address data sparsity issues. Improvements in performance are reported for two conversation analysis tasks: speaker role recognition and alignment classification.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Individual words are not powerful enough for many complex language classification problems. N-gram features include word context information, but are limited to contiguous word sequences. In this paper, we propose to use phrase patterns to extend n-grams for analyzing conversations, using a discriminative approach to learning patterns with a combination of words and word classes to address data sparsity issues. Improvements in performance are reported for two conversation analysis tasks: speaker role recognition and alignment classification.
使用丰富的短语模式分析对话
对于许多复杂的语言分类问题,单个单词的功能不够强大。N-gram特征包括单词上下文信息,但仅限于连续的单词序列。在本文中,我们建议使用短语模式来扩展n-gram来分析对话,使用判别方法来学习单词和词类组合的模式,以解决数据稀疏性问题。在两个会话分析任务:说话者角色识别和一致性分类方面,报告了性能的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信