Development of a lightweight manipulator with constraint mechanism

Daichi Matsuoka, G. Enriquez, Huei Ee Yap, S. Hashimoto
{"title":"Development of a lightweight manipulator with constraint mechanism","authors":"Daichi Matsuoka, G. Enriquez, Huei Ee Yap, S. Hashimoto","doi":"10.1109/MHS.2014.7006066","DOIUrl":null,"url":null,"abstract":"Hyper-redundant manipulators are an interesting solution for flexible manipulations. While these types of manipulators can be used in complex environments, often their weight becomes impractically heavy due to the large number of actuators required for a large number of degrees of freedom. Biomimetic manipulators have received attention as a possible solution for the above problem, by imitating biological systems in which a large number of joints are driven by cooperation of muscles. However, these approaches often don't achieve the desired weight reduction as a whole system, due to the need for an air compressor. As such, the purpose of our research is a hyper-redundant manipulator designed with the intention of weight saving over the whole system.","PeriodicalId":181514,"journal":{"name":"2014 International Symposium on Micro-NanoMechatronics and Human Science (MHS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Micro-NanoMechatronics and Human Science (MHS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2014.7006066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hyper-redundant manipulators are an interesting solution for flexible manipulations. While these types of manipulators can be used in complex environments, often their weight becomes impractically heavy due to the large number of actuators required for a large number of degrees of freedom. Biomimetic manipulators have received attention as a possible solution for the above problem, by imitating biological systems in which a large number of joints are driven by cooperation of muscles. However, these approaches often don't achieve the desired weight reduction as a whole system, due to the need for an air compressor. As such, the purpose of our research is a hyper-redundant manipulator designed with the intention of weight saving over the whole system.
具有约束机构的轻型机械臂的研制
超冗余操纵器是灵活操纵的一种有趣的解决方案。虽然这些类型的机械手可以在复杂的环境中使用,但由于需要大量的作动器来实现大量的自由度,它们的重量往往变得不切实际。仿生机械臂作为上述问题的一种可能的解决方案而受到关注,它模仿生物系统中大量的关节是由肌肉的合作驱动的。然而,由于需要空气压缩机,这些方法通常不能达到整个系统所需的减重效果。因此,我们研究的目的是设计一个以减轻整个系统重量为目的的超冗余机械手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信